ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminxp Unicode version

Theorem dminxp 5075
Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Distinct variable groups:    x, A    x, y, B    x, C, y
Allowed substitution hint:    A( y)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 4821 . . . 4  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  `' ( C  i^i  ( A  X.  B ) )
2 cnvin 5038 . . . . . 6  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  `' ( A  X.  B ) )
3 cnvxp 5049 . . . . . . 7  |-  `' ( A  X.  B )  =  ( B  X.  A )
43ineq2i 3335 . . . . . 6  |-  ( `' C  i^i  `' ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A ) )
52, 4eqtri 2198 . . . . 5  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A
) )
65rneqi 4857 . . . 4  |-  ran  `' ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A ) )
71, 6eqtri 2198 . . 3  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A
) )
87eqeq1i 2185 . 2  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  ran  ( `' C  i^i  ( B  X.  A ) )  =  A )
9 rninxp 5074 . 2  |-  ( ran  ( `' C  i^i  ( B  X.  A
) )  =  A  <->  A. x  e.  A  E. y  e.  B  y `' C x )
10 vex 2742 . . . . 5  |-  y  e. 
_V
11 vex 2742 . . . . 5  |-  x  e. 
_V
1210, 11brcnv 4812 . . . 4  |-  ( y `' C x  <->  x C
y )
1312rexbii 2484 . . 3  |-  ( E. y  e.  B  y `' C x  <->  E. y  e.  B  x C
y )
1413ralbii 2483 . 2  |-  ( A. x  e.  A  E. y  e.  B  y `' C x  <->  A. x  e.  A  E. y  e.  B  x C
y )
158, 9, 143bitri 206 1  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   A.wral 2455   E.wrex 2456    i^i cin 3130   class class class wbr 4005    X. cxp 4626   `'ccnv 4627   dom cdm 4628   ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator