ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminxp Unicode version

Theorem dminxp 5126
Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Distinct variable groups:    x, A    x, y, B    x, C, y
Allowed substitution hint:    A( y)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 4869 . . . 4  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  `' ( C  i^i  ( A  X.  B ) )
2 cnvin 5089 . . . . . 6  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  `' ( A  X.  B ) )
3 cnvxp 5100 . . . . . . 7  |-  `' ( A  X.  B )  =  ( B  X.  A )
43ineq2i 3370 . . . . . 6  |-  ( `' C  i^i  `' ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A ) )
52, 4eqtri 2225 . . . . 5  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A
) )
65rneqi 4905 . . . 4  |-  ran  `' ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A ) )
71, 6eqtri 2225 . . 3  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A
) )
87eqeq1i 2212 . 2  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  ran  ( `' C  i^i  ( B  X.  A ) )  =  A )
9 rninxp 5125 . 2  |-  ( ran  ( `' C  i^i  ( B  X.  A
) )  =  A  <->  A. x  e.  A  E. y  e.  B  y `' C x )
10 vex 2774 . . . . 5  |-  y  e. 
_V
11 vex 2774 . . . . 5  |-  x  e. 
_V
1210, 11brcnv 4860 . . . 4  |-  ( y `' C x  <->  x C
y )
1312rexbii 2512 . . 3  |-  ( E. y  e.  B  y `' C x  <->  E. y  e.  B  x C
y )
1413ralbii 2511 . 2  |-  ( A. x  e.  A  E. y  e.  B  y `' C x  <->  A. x  e.  A  E. y  e.  B  x C
y )
158, 9, 143bitri 206 1  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372   A.wral 2483   E.wrex 2484    i^i cin 3164   class class class wbr 4043    X. cxp 4672   `'ccnv 4673   dom cdm 4674   ran crn 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator