ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminxp Unicode version

Theorem dminxp 5172
Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Distinct variable groups:    x, A    x, y, B    x, C, y
Allowed substitution hint:    A( y)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 4914 . . . 4  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  `' ( C  i^i  ( A  X.  B ) )
2 cnvin 5135 . . . . . 6  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  `' ( A  X.  B ) )
3 cnvxp 5146 . . . . . . 7  |-  `' ( A  X.  B )  =  ( B  X.  A )
43ineq2i 3402 . . . . . 6  |-  ( `' C  i^i  `' ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A ) )
52, 4eqtri 2250 . . . . 5  |-  `' ( C  i^i  ( A  X.  B ) )  =  ( `' C  i^i  ( B  X.  A
) )
65rneqi 4951 . . . 4  |-  ran  `' ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A ) )
71, 6eqtri 2250 . . 3  |-  dom  ( C  i^i  ( A  X.  B ) )  =  ran  ( `' C  i^i  ( B  X.  A
) )
87eqeq1i 2237 . 2  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  ran  ( `' C  i^i  ( B  X.  A ) )  =  A )
9 rninxp 5171 . 2  |-  ( ran  ( `' C  i^i  ( B  X.  A
) )  =  A  <->  A. x  e.  A  E. y  e.  B  y `' C x )
10 vex 2802 . . . . 5  |-  y  e. 
_V
11 vex 2802 . . . . 5  |-  x  e. 
_V
1210, 11brcnv 4904 . . . 4  |-  ( y `' C x  <->  x C
y )
1312rexbii 2537 . . 3  |-  ( E. y  e.  B  y `' C x  <->  E. y  e.  B  x C
y )
1413ralbii 2536 . 2  |-  ( A. x  e.  A  E. y  e.  B  y `' C x  <->  A. x  e.  A  E. y  e.  B  x C
y )
158, 9, 143bitri 206 1  |-  ( dom  ( C  i^i  ( A  X.  B ) )  =  A  <->  A. x  e.  A  E. y  e.  B  x C
y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   A.wral 2508   E.wrex 2509    i^i cin 3196   class class class wbr 4082    X. cxp 4716   `'ccnv 4717   dom cdm 4718   ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator