| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rninxp | GIF version | ||
| Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rninxp | ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3173 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴)) | |
| 2 | ssrnres 5112 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | |
| 3 | df-ima 4676 | . . . . 5 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 4 | 3 | eleq2i 2263 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ 𝑦 ∈ ran (𝐶 ↾ 𝐴)) |
| 5 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 6 | 5 | elima 5014 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 7 | 4, 6 | bitr3i 186 | . . 3 ⊢ (𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 8 | 7 | ralbii 2503 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| 9 | 1, 2, 8 | 3bitr3i 210 | 1 ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∩ cin 3156 ⊆ wss 3157 class class class wbr 4033 × cxp 4661 ran crn 4664 ↾ cres 4665 “ cima 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: dminxp 5114 fncnv 5324 |
| Copyright terms: Public domain | W3C validator |