![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rninxp | GIF version |
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rninxp | ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3157 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴)) | |
2 | ssrnres 5083 | . 2 ⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) | |
3 | df-ima 4651 | . . . . 5 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
4 | 3 | eleq2i 2254 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ 𝑦 ∈ ran (𝐶 ↾ 𝐴)) |
5 | vex 2752 | . . . . 5 ⊢ 𝑦 ∈ V | |
6 | 5 | elima 4987 | . . . 4 ⊢ (𝑦 ∈ (𝐶 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
7 | 4, 6 | bitr3i 186 | . . 3 ⊢ (𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
8 | 7 | ralbii 2493 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
9 | 1, 2, 8 | 3bitr3i 210 | 1 ⊢ (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐶𝑦) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 ∩ cin 3140 ⊆ wss 3141 class class class wbr 4015 × cxp 4636 ran crn 4639 ↾ cres 4640 “ cima 4641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-xp 4644 df-rel 4645 df-cnv 4646 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 |
This theorem is referenced by: dminxp 5085 fncnv 5294 |
Copyright terms: Public domain | W3C validator |