ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rninxp GIF version

Theorem rninxp 5084
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3157 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴))
2 ssrnres 5083 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
3 df-ima 4651 . . . . 5 (𝐶𝐴) = ran (𝐶𝐴)
43eleq2i 2254 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ 𝑦 ∈ ran (𝐶𝐴))
5 vex 2752 . . . . 5 𝑦 ∈ V
65elima 4987 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
74, 6bitr3i 186 . . 3 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
87ralbii 2493 . 2 (∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴) ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
91, 2, 83bitr3i 210 1 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1363  wcel 2158  wral 2465  wrex 2466  cin 3140  wss 3141   class class class wbr 4015   × cxp 4636  ran crn 4639  cres 4640  cima 4641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651
This theorem is referenced by:  dminxp  5085  fncnv  5294
  Copyright terms: Public domain W3C validator