ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rninxp GIF version

Theorem rninxp 5074
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3147 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴))
2 ssrnres 5073 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
3 df-ima 4641 . . . . 5 (𝐶𝐴) = ran (𝐶𝐴)
43eleq2i 2244 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ 𝑦 ∈ ran (𝐶𝐴))
5 vex 2742 . . . . 5 𝑦 ∈ V
65elima 4977 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
74, 6bitr3i 186 . . 3 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
87ralbii 2483 . 2 (∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴) ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
91, 2, 83bitr3i 210 1 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cin 3130  wss 3131   class class class wbr 4005   × cxp 4626  ran crn 4629  cres 4630  cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  dminxp  5075  fncnv  5284
  Copyright terms: Public domain W3C validator