ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rninxp GIF version

Theorem rninxp 4861
Description: Range of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rninxp (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rninxp
StepHypRef Expression
1 dfss3 3013 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴))
2 ssrnres 4860 . 2 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
3 df-ima 4441 . . . . 5 (𝐶𝐴) = ran (𝐶𝐴)
43eleq2i 2154 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ 𝑦 ∈ ran (𝐶𝐴))
5 vex 2622 . . . . 5 𝑦 ∈ V
65elima 4766 . . . 4 (𝑦 ∈ (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
74, 6bitr3i 184 . . 3 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝐴 𝑥𝐶𝑦)
87ralbii 2384 . 2 (∀𝑦𝐵 𝑦 ∈ ran (𝐶𝐴) ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
91, 2, 83bitr3i 208 1 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1289  wcel 1438  wral 2359  wrex 2360  cin 2996  wss 2997   class class class wbr 3837   × cxp 4426  ran crn 4429  cres 4430  cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-rel 4435  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by:  dminxp  4862  fncnv  5066
  Copyright terms: Public domain W3C validator