ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem2 Unicode version

Theorem cauappcvgprlem2 7786
Description: Lemma for cauappcvgpr 7788. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlem.q  |-  ( ph  ->  Q  e.  Q. )
cauappcvgprlem.r  |-  ( ph  ->  R  e.  Q. )
Assertion
Ref Expression
cauappcvgprlem2  |-  ( ph  ->  L  <P  <. { l  |  l  <Q  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, p, q, l, u    Q, p, q, l, u    R, p, q, l, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    L( u, l)

Proof of Theorem cauappcvgprlem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.q . . . . 5  |-  ( ph  ->  Q  e.  Q. )
2 cauappcvgprlem.r . . . . 5  |-  ( ph  ->  R  e.  Q. )
3 ltaddnq 7533 . . . . 5  |-  ( ( Q  e.  Q.  /\  R  e.  Q. )  ->  Q  <Q  ( Q  +Q  R ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  Q  <Q  ( Q  +Q  R ) )
5 cauappcvgpr.f . . . . 5  |-  ( ph  ->  F : Q. --> Q. )
65, 1ffvelcdmd 5726 . . . 4  |-  ( ph  ->  ( F `  Q
)  e.  Q. )
7 ltanqi 7528 . . . 4  |-  ( ( Q  <Q  ( Q  +Q  R )  /\  ( F `  Q )  e.  Q. )  ->  (
( F `  Q
)  +Q  Q ) 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) )
84, 6, 7syl2anc 411 . . 3  |-  ( ph  ->  ( ( F `  Q )  +Q  Q
)  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  R
) ) )
9 ltbtwnnqq 7541 . . 3  |-  ( ( ( F `  Q
)  +Q  Q ) 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) )  <->  E. x  e.  Q.  ( ( ( F `
 Q )  +Q  Q )  <Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) )
108, 9sylib 122 . 2  |-  ( ph  ->  E. x  e.  Q.  ( ( ( F `
 Q )  +Q  Q )  <Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) )
11 simprl 529 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  x  e.  Q. )
121adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  Q  e.  Q. )
13 simprrl 539 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  -> 
( ( F `  Q )  +Q  Q
)  <Q  x )
14 fveq2 5586 . . . . . . . . 9  |-  ( q  =  Q  ->  ( F `  q )  =  ( F `  Q ) )
15 id 19 . . . . . . . . 9  |-  ( q  =  Q  ->  q  =  Q )
1614, 15oveq12d 5972 . . . . . . . 8  |-  ( q  =  Q  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 Q )  +Q  Q ) )
1716breq1d 4058 . . . . . . 7  |-  ( q  =  Q  ->  (
( ( F `  q )  +Q  q
)  <Q  x  <->  ( ( F `  Q )  +Q  Q )  <Q  x
) )
1817rspcev 2879 . . . . . 6  |-  ( ( Q  e.  Q.  /\  ( ( F `  Q )  +Q  Q
)  <Q  x )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  x )
1912, 13, 18syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  x )
20 breq2 4052 . . . . . . 7  |-  ( u  =  x  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  x
) )
2120rexbidv 2508 . . . . . 6  |-  ( u  =  x  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  x
) )
22 cauappcvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
2322fveq2i 5589 . . . . . . 7  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
24 nqex 7489 . . . . . . . . 9  |-  Q.  e.  _V
2524rabex 4193 . . . . . . . 8  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
2624rabex 4193 . . . . . . . 8  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
2725, 26op2nd 6243 . . . . . . 7  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2823, 27eqtri 2227 . . . . . 6  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2921, 28elrab2 2934 . . . . 5  |-  ( x  e.  ( 2nd `  L
)  <->  ( x  e. 
Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  x
) )
3011, 19, 29sylanbrc 417 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  x  e.  ( 2nd `  L ) )
31 simprrr 540 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  x  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  R
) ) )
32 vex 2776 . . . . . . 7  |-  x  e. 
_V
33 breq1 4051 . . . . . . 7  |-  ( l  =  x  ->  (
l  <Q  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <->  x  <Q  ( ( F `  Q
)  +Q  ( Q  +Q  R ) ) ) )
3432, 33elab 2919 . . . . . 6  |-  ( x  e.  { l  |  l  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R
) ) }  <->  x  <Q  ( ( F `  Q
)  +Q  ( Q  +Q  R ) ) )
3531, 34sylibr 134 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  x  e.  { l  |  l  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } )
36 ltnqex 7675 . . . . . 6  |-  { l  |  l  <Q  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) }  e.  _V
37 gtnqex 7676 . . . . . 6  |-  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u }  e.  _V
3836, 37op1st 6242 . . . . 5  |-  ( 1st `  <. { l  |  l  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R
) ) } ,  { u  |  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )  =  { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) }
3935, 38eleqtrrdi 2300 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. ) )
40 rspe 2556 . . . 4  |-  ( ( x  e.  Q.  /\  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. ) ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. ) ) )
4111, 30, 39, 40syl12anc 1248 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. ) ) )
42 cauappcvgpr.app . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
43 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
445, 42, 43, 22cauappcvgprlemcl 7779 . . . . 5  |-  ( ph  ->  L  e.  P. )
4544adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  L  e.  P. )
46 addclnq 7501 . . . . . . . 8  |-  ( ( Q  e.  Q.  /\  R  e.  Q. )  ->  ( Q  +Q  R
)  e.  Q. )
471, 2, 46syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( Q  +Q  R
)  e.  Q. )
48 addclnq 7501 . . . . . . 7  |-  ( ( ( F `  Q
)  e.  Q.  /\  ( Q  +Q  R
)  e.  Q. )  ->  ( ( F `  Q )  +Q  ( Q  +Q  R ) )  e.  Q. )
496, 47, 48syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( F `  Q )  +Q  ( Q  +Q  R ) )  e.  Q. )
50 nqprlu 7673 . . . . . 6  |-  ( ( ( F `  Q
)  +Q  ( Q  +Q  R ) )  e.  Q.  ->  <. { l  |  l  <Q  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >.  e.  P. )
5149, 50syl 14 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >.  e.  P. )
5251adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  <. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >.  e.  P. )
53 ltdfpr 7632 . . . 4  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >.  e.  P. )  ->  ( L  <P  <. { l  |  l  <Q  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. 
<->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. ) ) ) )
5445, 52, 53syl2anc 411 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  -> 
( L  <P  <. { l  |  l  <Q  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. 
<->  E. x  e.  Q.  ( x  e.  ( 2nd `  L )  /\  x  e.  ( 1st ` 
<. { l  |  l 
<Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. ) ) ) )
5541, 54mpbird 167 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  ( ( ( F `  Q
)  +Q  Q ) 
<Q  x  /\  x  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) ) ) )  ->  L  <P  <. { l  |  l  <Q  ( ( F `  Q )  +Q  ( Q  +Q  R
) ) } ,  { u  |  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) 
<Q  u } >. )
5610, 55rexlimddv 2629 1  |-  ( ph  ->  L  <P  <. { l  |  l  <Q  (
( F `  Q
)  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `
 Q )  +Q  ( Q  +Q  R
) )  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   {cab 2192   A.wral 2485   E.wrex 2486   {crab 2489   <.cop 3638   class class class wbr 4048   -->wf 5273   ` cfv 5277  (class class class)co 5954   1stc1st 6234   2ndc2nd 6235   Q.cnq 7406    +Q cplq 7408    <Q cltq 7411   P.cnp 7417    <P cltp 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-inp 7592  df-iltp 7596
This theorem is referenced by:  cauappcvgprlemlim  7787
  Copyright terms: Public domain W3C validator