| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprlemopl | Unicode version | ||
| Description: Lemma for caucvgpr 7749. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.) |
| Ref | Expression |
|---|---|
| caucvgpr.f |
|
| caucvgpr.cau |
|
| caucvgpr.bnd |
|
| caucvgpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprlemopl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 |
. . . . . . 7
| |
| 2 | 1 | breq1d 4043 |
. . . . . 6
|
| 3 | 2 | rexbidv 2498 |
. . . . 5
|
| 4 | caucvgpr.lim |
. . . . . . 7
| |
| 5 | 4 | fveq2i 5561 |
. . . . . 6
|
| 6 | nqex 7430 |
. . . . . . . 8
| |
| 7 | 6 | rabex 4177 |
. . . . . . 7
|
| 8 | 6 | rabex 4177 |
. . . . . . 7
|
| 9 | 7, 8 | op1st 6204 |
. . . . . 6
|
| 10 | 5, 9 | eqtri 2217 |
. . . . 5
|
| 11 | 3, 10 | elrab2 2923 |
. . . 4
|
| 12 | 11 | simprbi 275 |
. . 3
|
| 13 | 12 | adantl 277 |
. 2
|
| 14 | simprr 531 |
. . . 4
| |
| 15 | ltbtwnnqq 7482 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | simplrl 535 |
. . . . . . . . 9
| |
| 18 | nnnq 7489 |
. . . . . . . . 9
| |
| 19 | recclnq 7459 |
. . . . . . . . 9
| |
| 20 | 17, 18, 19 | 3syl 17 |
. . . . . . . 8
|
| 21 | 11 | simplbi 274 |
. . . . . . . . 9
|
| 22 | 21 | ad3antlr 493 |
. . . . . . . 8
|
| 23 | ltaddnq 7474 |
. . . . . . . 8
| |
| 24 | 20, 22, 23 | syl2anc 411 |
. . . . . . 7
|
| 25 | addcomnqg 7448 |
. . . . . . . 8
| |
| 26 | 20, 22, 25 | syl2anc 411 |
. . . . . . 7
|
| 27 | 24, 26 | breqtrd 4059 |
. . . . . 6
|
| 28 | simprrl 539 |
. . . . . 6
| |
| 29 | ltsonq 7465 |
. . . . . . 7
| |
| 30 | ltrelnq 7432 |
. . . . . . 7
| |
| 31 | 29, 30 | sotri 5065 |
. . . . . 6
|
| 32 | 27, 28, 31 | syl2anc 411 |
. . . . 5
|
| 33 | simprl 529 |
. . . . . 6
| |
| 34 | ltexnqq 7475 |
. . . . . 6
| |
| 35 | 20, 33, 34 | syl2anc 411 |
. . . . 5
|
| 36 | 32, 35 | mpbid 147 |
. . . 4
|
| 37 | 22 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 38 | 20 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 39 | addcomnqg 7448 |
. . . . . . . . . . 11
| |
| 40 | 37, 38, 39 | syl2anc 411 |
. . . . . . . . . 10
|
| 41 | 28 | ad2antrr 488 |
. . . . . . . . . 10
|
| 42 | 40, 41 | eqbrtrrd 4057 |
. . . . . . . . 9
|
| 43 | simpr 110 |
. . . . . . . . 9
| |
| 44 | 42, 43 | breqtrrd 4061 |
. . . . . . . 8
|
| 45 | simplr 528 |
. . . . . . . . 9
| |
| 46 | ltanqg 7467 |
. . . . . . . . 9
| |
| 47 | 37, 45, 38, 46 | syl3anc 1249 |
. . . . . . . 8
|
| 48 | 44, 47 | mpbird 167 |
. . . . . . 7
|
| 49 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 50 | simprrr 540 |
. . . . . . . . . . 11
| |
| 51 | 50 | ad2antrr 488 |
. . . . . . . . . 10
|
| 52 | addcomnqg 7448 |
. . . . . . . . . . . . 13
| |
| 53 | 38, 45, 52 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 54 | 53, 43 | eqtr3d 2231 |
. . . . . . . . . . 11
|
| 55 | 54 | breq1d 4043 |
. . . . . . . . . 10
|
| 56 | 51, 55 | mpbird 167 |
. . . . . . . . 9
|
| 57 | rspe 2546 |
. . . . . . . . 9
| |
| 58 | 49, 56, 57 | syl2anc 411 |
. . . . . . . 8
|
| 59 | oveq1 5929 |
. . . . . . . . . . 11
| |
| 60 | 59 | breq1d 4043 |
. . . . . . . . . 10
|
| 61 | 60 | rexbidv 2498 |
. . . . . . . . 9
|
| 62 | 61, 10 | elrab2 2923 |
. . . . . . . 8
|
| 63 | 45, 58, 62 | sylanbrc 417 |
. . . . . . 7
|
| 64 | 48, 63 | jca 306 |
. . . . . 6
|
| 65 | 64 | ex 115 |
. . . . 5
|
| 66 | 65 | reximdva 2599 |
. . . 4
|
| 67 | 36, 66 | mpd 13 |
. . 3
|
| 68 | 16, 67 | rexlimddv 2619 |
. 2
|
| 69 | 13, 68 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 |
| This theorem is referenced by: caucvgprlemrnd 7740 |
| Copyright terms: Public domain | W3C validator |