ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopl Unicode version

Theorem caucvgprlemopl 7601
Description: Lemma for caucvgpr 7614. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemopl  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Distinct variable groups:    A, j    F, l, r, s    u, F   
j, L, r, s   
j, l, s    ph, j,
r, s    u, j,
r, s
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( j, k, n)    L( u, k, n, l)

Proof of Theorem caucvgprlemopl
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 oveq1 5843 . . . . . . 7  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
21breq1d 3986 . . . . . 6  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
32rexbidv 2465 . . . . 5  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4 caucvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
54fveq2i 5483 . . . . . 6  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
6 nqex 7295 . . . . . . . 8  |-  Q.  e.  _V
76rabex 4120 . . . . . . 7  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
86rabex 4120 . . . . . . 7  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
97, 8op1st 6106 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
105, 9eqtri 2185 . . . . 5  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
113, 10elrab2 2880 . . . 4  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1211simprbi 273 . . 3  |-  ( s  e.  ( 1st `  L
)  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
1312adantl 275 . 2  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
14 simprr 522 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
15 ltbtwnnqq 7347 . . . 4  |-  ( ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. t  e.  Q.  ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  t  /\  t  <Q  ( F `  j
) ) )
1614, 15sylib 121 . . 3  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  ->  E. t  e.  Q.  ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t  /\  t  <Q  ( F `  j ) ) )
17 simplrl 525 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  j  e.  N. )
18 nnnq 7354 . . . . . . . . 9  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
19 recclnq 7324 . . . . . . . . 9  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
2017, 18, 193syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e. 
Q. )
2111simplbi 272 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
2221ad3antlr 485 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  s  e.  Q. )
23 ltaddnq 7339 . . . . . . . 8  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q. )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s
) )
2420, 22, 23syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s ) )
25 addcomnqg 7313 . . . . . . . 8  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  =  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
2620, 22, 25syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  =  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
2724, 26breqtrd 4002 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
) )
28 simprrl 529 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t )
29 ltsonq 7330 . . . . . . 7  |-  <Q  Or  Q.
30 ltrelnq 7297 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
3129, 30sotri 4993 . . . . . 6  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  t )
3227, 28, 31syl2anc 409 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
t )
33 simprl 521 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  t  e.  Q. )
34 ltexnqq 7340 . . . . . 6  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  t  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
t  <->  E. r  e.  Q.  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t ) )
3520, 33, 34syl2anc 409 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  t  <->  E. r  e.  Q.  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t ) )
3632, 35mpbid 146 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  E. r  e.  Q.  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )
3722ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  s  e.  Q. )
3820ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e. 
Q. )
39 addcomnqg 7313 . . . . . . . . . . 11  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s ) )
4037, 38, 39syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  =  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s ) )
4128ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t )
4240, 41eqbrtrrd 4000 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  t
)
43 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )
4442, 43breqtrrd 4004 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r
) )
45 simplr 520 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  r  e.  Q. )
46 ltanqg 7332 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  r  e.  Q.  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
s  <Q  r  <->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r
) ) )
4737, 45, 38, 46syl3anc 1227 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  <Q  r  <->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r
) ) )
4844, 47mpbird 166 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  s  <Q  r )
4917ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  j  e.  N. )
50 simprrr 530 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  t  <Q  ( F `  j )
)
5150ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  t  <Q  ( F `  j ) )
52 addcomnqg 7313 . . . . . . . . . . . . 13  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  r  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  ( r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
5338, 45, 52syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  ( r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
5453, 43eqtr3d 2199 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  =  t )
5554breq1d 3986 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  t  <Q  ( F `  j ) ) )
5651, 55mpbird 166 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
57 rspe 2513 . . . . . . . . 9  |-  ( ( j  e.  N.  /\  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  ->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
5849, 56, 57syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
59 oveq1 5843 . . . . . . . . . . 11  |-  ( l  =  r  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
6059breq1d 3986 . . . . . . . . . 10  |-  ( l  =  r  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
6160rexbidv 2465 . . . . . . . . 9  |-  ( l  =  r  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
6261, 10elrab2 2880 . . . . . . . 8  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
6345, 58, 62sylanbrc 414 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  r  e.  ( 1st `  L ) )
6448, 63jca 304 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) )
6564ex 114 . . . . 5  |-  ( ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  ->  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) ) )
6665reximdva 2566 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( E. r  e.  Q.  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
6736, 66mpd 13 . . 3  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6816, 67rexlimddv 2586 . 2  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6913, 68rexlimddv 2586 1  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446   <.cop 3573   class class class wbr 3976   -->wf 5178   ` cfv 5182  (class class class)co 5836   1stc1st 6098   1oc1o 6368   [cec 6490   N.cnpi 7204    <N clti 7207    ~Q ceq 7211   Q.cnq 7212    +Q cplq 7214   *Qcrq 7216    <Q cltq 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285
This theorem is referenced by:  caucvgprlemrnd  7605
  Copyright terms: Public domain W3C validator