Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprlemopl | Unicode version |
Description: Lemma for caucvgpr 7644. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.) |
Ref | Expression |
---|---|
caucvgpr.f | |
caucvgpr.cau | |
caucvgpr.bnd | |
caucvgpr.lim |
Ref | Expression |
---|---|
caucvgprlemopl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . . . . . . 7 | |
2 | 1 | breq1d 3999 | . . . . . 6 |
3 | 2 | rexbidv 2471 | . . . . 5 |
4 | caucvgpr.lim | . . . . . . 7 | |
5 | 4 | fveq2i 5499 | . . . . . 6 |
6 | nqex 7325 | . . . . . . . 8 | |
7 | 6 | rabex 4133 | . . . . . . 7 |
8 | 6 | rabex 4133 | . . . . . . 7 |
9 | 7, 8 | op1st 6125 | . . . . . 6 |
10 | 5, 9 | eqtri 2191 | . . . . 5 |
11 | 3, 10 | elrab2 2889 | . . . 4 |
12 | 11 | simprbi 273 | . . 3 |
13 | 12 | adantl 275 | . 2 |
14 | simprr 527 | . . . 4 | |
15 | ltbtwnnqq 7377 | . . . 4 | |
16 | 14, 15 | sylib 121 | . . 3 |
17 | simplrl 530 | . . . . . . . . 9 | |
18 | nnnq 7384 | . . . . . . . . 9 | |
19 | recclnq 7354 | . . . . . . . . 9 | |
20 | 17, 18, 19 | 3syl 17 | . . . . . . . 8 |
21 | 11 | simplbi 272 | . . . . . . . . 9 |
22 | 21 | ad3antlr 490 | . . . . . . . 8 |
23 | ltaddnq 7369 | . . . . . . . 8 | |
24 | 20, 22, 23 | syl2anc 409 | . . . . . . 7 |
25 | addcomnqg 7343 | . . . . . . . 8 | |
26 | 20, 22, 25 | syl2anc 409 | . . . . . . 7 |
27 | 24, 26 | breqtrd 4015 | . . . . . 6 |
28 | simprrl 534 | . . . . . 6 | |
29 | ltsonq 7360 | . . . . . . 7 | |
30 | ltrelnq 7327 | . . . . . . 7 | |
31 | 29, 30 | sotri 5006 | . . . . . 6 |
32 | 27, 28, 31 | syl2anc 409 | . . . . 5 |
33 | simprl 526 | . . . . . 6 | |
34 | ltexnqq 7370 | . . . . . 6 | |
35 | 20, 33, 34 | syl2anc 409 | . . . . 5 |
36 | 32, 35 | mpbid 146 | . . . 4 |
37 | 22 | ad2antrr 485 | . . . . . . . . . . 11 |
38 | 20 | ad2antrr 485 | . . . . . . . . . . 11 |
39 | addcomnqg 7343 | . . . . . . . . . . 11 | |
40 | 37, 38, 39 | syl2anc 409 | . . . . . . . . . 10 |
41 | 28 | ad2antrr 485 | . . . . . . . . . 10 |
42 | 40, 41 | eqbrtrrd 4013 | . . . . . . . . 9 |
43 | simpr 109 | . . . . . . . . 9 | |
44 | 42, 43 | breqtrrd 4017 | . . . . . . . 8 |
45 | simplr 525 | . . . . . . . . 9 | |
46 | ltanqg 7362 | . . . . . . . . 9 | |
47 | 37, 45, 38, 46 | syl3anc 1233 | . . . . . . . 8 |
48 | 44, 47 | mpbird 166 | . . . . . . 7 |
49 | 17 | ad2antrr 485 | . . . . . . . . 9 |
50 | simprrr 535 | . . . . . . . . . . 11 | |
51 | 50 | ad2antrr 485 | . . . . . . . . . 10 |
52 | addcomnqg 7343 | . . . . . . . . . . . . 13 | |
53 | 38, 45, 52 | syl2anc 409 | . . . . . . . . . . . 12 |
54 | 53, 43 | eqtr3d 2205 | . . . . . . . . . . 11 |
55 | 54 | breq1d 3999 | . . . . . . . . . 10 |
56 | 51, 55 | mpbird 166 | . . . . . . . . 9 |
57 | rspe 2519 | . . . . . . . . 9 | |
58 | 49, 56, 57 | syl2anc 409 | . . . . . . . 8 |
59 | oveq1 5860 | . . . . . . . . . . 11 | |
60 | 59 | breq1d 3999 | . . . . . . . . . 10 |
61 | 60 | rexbidv 2471 | . . . . . . . . 9 |
62 | 61, 10 | elrab2 2889 | . . . . . . . 8 |
63 | 45, 58, 62 | sylanbrc 415 | . . . . . . 7 |
64 | 48, 63 | jca 304 | . . . . . 6 |
65 | 64 | ex 114 | . . . . 5 |
66 | 65 | reximdva 2572 | . . . 4 |
67 | 36, 66 | mpd 13 | . . 3 |
68 | 16, 67 | rexlimddv 2592 | . 2 |
69 | 13, 68 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cop 3586 class class class wbr 3989 wf 5194 cfv 5198 (class class class)co 5853 c1st 6117 c1o 6388 cec 6511 cnpi 7234 clti 7237 ceq 7241 cnq 7242 cplq 7244 crq 7246 cltq 7247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 |
This theorem is referenced by: caucvgprlemrnd 7635 |
Copyright terms: Public domain | W3C validator |