ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopl Unicode version

Theorem caucvgprlemopl 7781
Description: Lemma for caucvgpr 7794. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemopl  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Distinct variable groups:    A, j    F, l, r, s    u, F   
j, L, r, s   
j, l, s    ph, j,
r, s    u, j,
r, s
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( j, k, n)    L( u, k, n, l)

Proof of Theorem caucvgprlemopl
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 oveq1 5950 . . . . . . 7  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
21breq1d 4053 . . . . . 6  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
32rexbidv 2506 . . . . 5  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4 caucvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
54fveq2i 5578 . . . . . 6  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
6 nqex 7475 . . . . . . . 8  |-  Q.  e.  _V
76rabex 4187 . . . . . . 7  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
86rabex 4187 . . . . . . 7  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
97, 8op1st 6231 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
105, 9eqtri 2225 . . . . 5  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
113, 10elrab2 2931 . . . 4  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
1211simprbi 275 . . 3  |-  ( s  e.  ( 1st `  L
)  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
1312adantl 277 . 2  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
14 simprr 531 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
15 ltbtwnnqq 7527 . . . 4  |-  ( ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. t  e.  Q.  ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  t  /\  t  <Q  ( F `  j
) ) )
1614, 15sylib 122 . . 3  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  ->  E. t  e.  Q.  ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t  /\  t  <Q  ( F `  j ) ) )
17 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  j  e.  N. )
18 nnnq 7534 . . . . . . . . 9  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
19 recclnq 7504 . . . . . . . . 9  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
2017, 18, 193syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e. 
Q. )
2111simplbi 274 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
2221ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  s  e.  Q. )
23 ltaddnq 7519 . . . . . . . 8  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q. )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s
) )
2420, 22, 23syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s ) )
25 addcomnqg 7493 . . . . . . . 8  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  =  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
2620, 22, 25syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  =  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
2724, 26breqtrd 4069 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
) )
28 simprrl 539 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t )
29 ltsonq 7510 . . . . . . 7  |-  <Q  Or  Q.
30 ltrelnq 7477 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
3129, 30sotri 5077 . . . . . 6  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  t )
3227, 28, 31syl2anc 411 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
t )
33 simprl 529 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  t  e.  Q. )
34 ltexnqq 7520 . . . . . 6  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  t  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
t  <->  E. r  e.  Q.  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t ) )
3520, 33, 34syl2anc 411 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  t  <->  E. r  e.  Q.  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t ) )
3632, 35mpbid 147 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  E. r  e.  Q.  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )
3722ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  s  e.  Q. )
3820ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e. 
Q. )
39 addcomnqg 7493 . . . . . . . . . . 11  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s ) )
4037, 38, 39syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  =  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s ) )
4128ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
t )
4240, 41eqbrtrrd 4067 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  t
)
43 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )
4442, 43breqtrrd 4071 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r
) )
45 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  r  e.  Q. )
46 ltanqg 7512 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  r  e.  Q.  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
s  <Q  r  <->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r
) ) )
4737, 45, 38, 46syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  <Q  r  <->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  s )  <Q  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r
) ) )
4844, 47mpbird 167 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  s  <Q  r )
4917ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  j  e.  N. )
50 simprrr 540 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  t  <Q  ( F `  j )
)
5150ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  t  <Q  ( F `  j ) )
52 addcomnqg 7493 . . . . . . . . . . . . 13  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  r  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  ( r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
5338, 45, 52syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  ( r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
) )
5453, 43eqtr3d 2239 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  =  t )
5554breq1d 4053 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( (
r  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  t  <Q  ( F `  j ) ) )
5651, 55mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
57 rspe 2554 . . . . . . . . 9  |-  ( ( j  e.  N.  /\  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )  ->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
5849, 56, 57syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
59 oveq1 5950 . . . . . . . . . . 11  |-  ( l  =  r  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
6059breq1d 4053 . . . . . . . . . 10  |-  ( l  =  r  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
6160rexbidv 2506 . . . . . . . . 9  |-  ( l  =  r  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
6261, 10elrab2 2931 . . . . . . . 8  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( r  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
6345, 58, 62sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  r  e.  ( 1st `  L ) )
6448, 63jca 306 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  /\  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t )  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) )
6564ex 115 . . . . 5  |-  ( ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  /\  r  e.  Q. )  ->  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) ) )
6665reximdva 2607 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  ( E. r  e.  Q.  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  +Q  r )  =  t  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
6736, 66mpd 13 . . 3  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  t  /\  t  <Q  ( F `  j
) ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6816, 67rexlimddv 2627 . 2  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
j  e.  N.  /\  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6913, 68rexlimddv 2627 1  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487   <.cop 3635   class class class wbr 4043   -->wf 5266   ` cfv 5270  (class class class)co 5943   1stc1st 6223   1oc1o 6494   [cec 6617   N.cnpi 7384    <N clti 7387    ~Q ceq 7391   Q.cnq 7392    +Q cplq 7394   *Qcrq 7396    <Q cltq 7397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465
This theorem is referenced by:  caucvgprlemrnd  7785
  Copyright terms: Public domain W3C validator