ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopu Unicode version

Theorem caucvgprlemopu 7672
Description: Lemma for caucvgpr 7683. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemopu  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j    F, l, r, s    u, F   
j, L, r, s   
j, l, s    ph, j,
r, s    u, j,
r, s
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( j, k, n)    L( u, k, n, l)

Proof of Theorem caucvgprlemopu
StepHypRef Expression
1 breq2 4009 . . . . . 6  |-  ( u  =  r  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
21rexbidv 2478 . . . . 5  |-  ( u  =  r  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
3 caucvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
43fveq2i 5520 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
5 nqex 7364 . . . . . . . 8  |-  Q.  e.  _V
65rabex 4149 . . . . . . 7  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
75rabex 4149 . . . . . . 7  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
86, 7op2nd 6150 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
94, 8eqtri 2198 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
102, 9elrab2 2898 . . . 4  |-  ( r  e.  ( 2nd `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
1110simprbi 275 . . 3  |-  ( r  e.  ( 2nd `  L
)  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
1211adantl 277 . 2  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
13 simprr 531 . . . 4  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
14 ltbtwnnqq 7416 . . . 4  |-  ( ( ( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r  <->  E. s  e.  Q.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )
1513, 14sylib 122 . . 3  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  E. s  e.  Q.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s  /\  s  <Q  r ) )
16 simprr 531 . . . . . 6  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
s  <Q  r )
17 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
s  e.  Q. )
18 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  ->  j  e.  N. )
1918adantr 276 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
j  e.  N. )
20 simprl 529 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
21 rspe 2526 . . . . . . . 8  |-  ( ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
2219, 20, 21syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
23 breq2 4009 . . . . . . . . 9  |-  ( u  =  s  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2423rexbidv 2478 . . . . . . . 8  |-  ( u  =  s  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2524, 9elrab2 2898 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2617, 22, 25sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
s  e.  ( 2nd `  L ) )
2716, 26jca 306 . . . . 5  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
2827ex 115 . . . 4  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  ->  ( ( ( ( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  /\  s  <Q  r )  ->  (
s  <Q  r  /\  s  e.  ( 2nd `  L
) ) ) )
2928reximdva 2579 . . 3  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  ( E. s  e.  Q.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) ) )
3015, 29mpd 13 . 2  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
3112, 30rexlimddv 2599 1  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   2ndc2nd 6142   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283   *Qcrq 7285    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354
This theorem is referenced by:  caucvgprlemrnd  7674
  Copyright terms: Public domain W3C validator