ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopl Unicode version

Theorem cauappcvgprlemopl 7608
Description: Lemma for cauappcvgpr 7624. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemopl  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemopl
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . . . . 7  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
21breq1d 3999 . . . . . 6  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
32rexbidv 2471 . . . . 5  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
4 cauappcvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
54fveq2i 5499 . . . . . 6  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6 nqex 7325 . . . . . . . 8  |-  Q.  e.  _V
76rabex 4133 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
86rabex 4133 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
97, 8op1st 6125 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
105, 9eqtri 2191 . . . . 5  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
113, 10elrab2 2889 . . . 4  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
1211simprbi 273 . . 3  |-  ( s  e.  ( 1st `  L
)  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
1312adantl 275 . 2  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
14 simprr 527 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  ( s  +Q  q )  <Q  ( F `  q )
)
15 ltbtwnnqq 7377 . . . 4  |-  ( ( s  +Q  q ) 
<Q  ( F `  q
)  <->  E. t  e.  Q.  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) )
1614, 15sylib 121 . . 3  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  E. t  e.  Q.  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) )
17 simplrl 530 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  e.  Q. )
1811simplbi 272 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
1918ad3antlr 490 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  s  e.  Q. )
20 ltaddnq 7369 . . . . . . . 8  |-  ( ( q  e.  Q.  /\  s  e.  Q. )  ->  q  <Q  ( q  +Q  s ) )
2117, 19, 20syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  (
q  +Q  s ) )
22 addcomnqg 7343 . . . . . . . 8  |-  ( ( q  e.  Q.  /\  s  e.  Q. )  ->  ( q  +Q  s
)  =  ( s  +Q  q ) )
2317, 19, 22syl2anc 409 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( q  +Q  s )  =  ( s  +Q  q ) )
2421, 23breqtrd 4015 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  (
s  +Q  q ) )
25 simprrl 534 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( s  +Q  q )  <Q  t
)
26 ltsonq 7360 . . . . . . 7  |-  <Q  Or  Q.
27 ltrelnq 7327 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2826, 27sotri 5006 . . . . . 6  |-  ( ( q  <Q  ( s  +Q  q )  /\  (
s  +Q  q ) 
<Q  t )  ->  q  <Q  t )
2924, 25, 28syl2anc 409 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  t
)
30 simprl 526 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  t  e.  Q. )
31 ltexnqq 7370 . . . . . 6  |-  ( ( q  e.  Q.  /\  t  e.  Q. )  ->  ( q  <Q  t  <->  E. r  e.  Q.  (
q  +Q  r )  =  t ) )
3217, 30, 31syl2anc 409 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( q  <Q 
t  <->  E. r  e.  Q.  ( q  +Q  r
)  =  t ) )
3329, 32mpbid 146 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  E. r  e.  Q.  ( q  +Q  r
)  =  t )
3425ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  +Q  q
)  <Q  t )
3519ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
s  e.  Q. )
3617ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
q  e.  Q. )
37 addcomnqg 7343 . . . . . . . . . . . 12  |-  ( ( s  e.  Q.  /\  q  e.  Q. )  ->  ( s  +Q  q
)  =  ( q  +Q  s ) )
3835, 36, 37syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  +Q  q
)  =  ( q  +Q  s ) )
3938breq1d 3999 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( ( s  +Q  q )  <Q  t  <->  ( q  +Q  s ) 
<Q  t ) )
4034, 39mpbid 146 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  s
)  <Q  t )
41 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  r
)  =  t )
4240, 41breqtrrd 4017 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  s
)  <Q  ( q  +Q  r ) )
43 simplr 525 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
r  e.  Q. )
44 ltanqg 7362 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  r  e.  Q.  /\  q  e.  Q. )  ->  (
s  <Q  r  <->  ( q  +Q  s )  <Q  (
q  +Q  r ) ) )
4535, 43, 36, 44syl3anc 1233 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  <Q  r  <->  ( q  +Q  s ) 
<Q  ( q  +Q  r
) ) )
4642, 45mpbird 166 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
s  <Q  r )
47 simprrr 535 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  t  <Q  ( F `  q )
)
4847ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
t  <Q  ( F `  q ) )
49 addcomnqg 7343 . . . . . . . . . . . . 13  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( q  +Q  r
)  =  ( r  +Q  q ) )
5036, 43, 49syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  r
)  =  ( r  +Q  q ) )
5150, 41eqtr3d 2205 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( r  +Q  q
)  =  t )
5251breq1d 3999 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( ( r  +Q  q )  <Q  ( F `  q )  <->  t 
<Q  ( F `  q
) ) )
5348, 52mpbird 166 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( r  +Q  q
)  <Q  ( F `  q ) )
54 rspe 2519 . . . . . . . . 9  |-  ( ( q  e.  Q.  /\  ( r  +Q  q
)  <Q  ( F `  q ) )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( F `  q ) )
5536, 53, 54syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( F `  q ) )
56 oveq1 5860 . . . . . . . . . . 11  |-  ( l  =  r  ->  (
l  +Q  q )  =  ( r  +Q  q ) )
5756breq1d 3999 . . . . . . . . . 10  |-  ( l  =  r  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( r  +Q  q )  <Q  ( F `  q )
) )
5857rexbidv 2471 . . . . . . . . 9  |-  ( l  =  r  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
5958, 10elrab2 2889 . . . . . . . 8  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
6043, 55, 59sylanbrc 415 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
r  e.  ( 1st `  L ) )
6146, 60jca 304 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6261ex 114 . . . . 5  |-  ( ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  /\  r  e.  Q. )  ->  ( ( q  +Q  r )  =  t  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) ) )
6362reximdva 2572 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( E. r  e.  Q.  ( q  +Q  r )  =  t  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
6433, 63mpd 13 . . 3  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6516, 64rexlimddv 2592 . 2  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6613, 65rexlimddv 2592 1  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   1stc1st 6117   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315
This theorem is referenced by:  cauappcvgprlemrnd  7612
  Copyright terms: Public domain W3C validator