| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemopl | Unicode version | ||
| Description: Lemma for cauappcvgpr 7790. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemopl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5963 |
. . . . . . 7
| |
| 2 | 1 | breq1d 4060 |
. . . . . 6
|
| 3 | 2 | rexbidv 2508 |
. . . . 5
|
| 4 | cauappcvgpr.lim |
. . . . . . 7
| |
| 5 | 4 | fveq2i 5591 |
. . . . . 6
|
| 6 | nqex 7491 |
. . . . . . . 8
| |
| 7 | 6 | rabex 4195 |
. . . . . . 7
|
| 8 | 6 | rabex 4195 |
. . . . . . 7
|
| 9 | 7, 8 | op1st 6244 |
. . . . . 6
|
| 10 | 5, 9 | eqtri 2227 |
. . . . 5
|
| 11 | 3, 10 | elrab2 2936 |
. . . 4
|
| 12 | 11 | simprbi 275 |
. . 3
|
| 13 | 12 | adantl 277 |
. 2
|
| 14 | simprr 531 |
. . . 4
| |
| 15 | ltbtwnnqq 7543 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | simplrl 535 |
. . . . . . . 8
| |
| 18 | 11 | simplbi 274 |
. . . . . . . . 9
|
| 19 | 18 | ad3antlr 493 |
. . . . . . . 8
|
| 20 | ltaddnq 7535 |
. . . . . . . 8
| |
| 21 | 17, 19, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | addcomnqg 7509 |
. . . . . . . 8
| |
| 23 | 17, 19, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 21, 23 | breqtrd 4076 |
. . . . . 6
|
| 25 | simprrl 539 |
. . . . . 6
| |
| 26 | ltsonq 7526 |
. . . . . . 7
| |
| 27 | ltrelnq 7493 |
. . . . . . 7
| |
| 28 | 26, 27 | sotri 5086 |
. . . . . 6
|
| 29 | 24, 25, 28 | syl2anc 411 |
. . . . 5
|
| 30 | simprl 529 |
. . . . . 6
| |
| 31 | ltexnqq 7536 |
. . . . . 6
| |
| 32 | 17, 30, 31 | syl2anc 411 |
. . . . 5
|
| 33 | 29, 32 | mpbid 147 |
. . . 4
|
| 34 | 25 | ad2antrr 488 |
. . . . . . . . . 10
|
| 35 | 19 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 36 | 17 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 37 | addcomnqg 7509 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
|
| 39 | 38 | breq1d 4060 |
. . . . . . . . . 10
|
| 40 | 34, 39 | mpbid 147 |
. . . . . . . . 9
|
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | 40, 41 | breqtrrd 4078 |
. . . . . . . 8
|
| 43 | simplr 528 |
. . . . . . . . 9
| |
| 44 | ltanqg 7528 |
. . . . . . . . 9
| |
| 45 | 35, 43, 36, 44 | syl3anc 1250 |
. . . . . . . 8
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . 7
|
| 47 | simprrr 540 |
. . . . . . . . . . 11
| |
| 48 | 47 | ad2antrr 488 |
. . . . . . . . . 10
|
| 49 | addcomnqg 7509 |
. . . . . . . . . . . . 13
| |
| 50 | 36, 43, 49 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 51 | 50, 41 | eqtr3d 2241 |
. . . . . . . . . . 11
|
| 52 | 51 | breq1d 4060 |
. . . . . . . . . 10
|
| 53 | 48, 52 | mpbird 167 |
. . . . . . . . 9
|
| 54 | rspe 2556 |
. . . . . . . . 9
| |
| 55 | 36, 53, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | oveq1 5963 |
. . . . . . . . . . 11
| |
| 57 | 56 | breq1d 4060 |
. . . . . . . . . 10
|
| 58 | 57 | rexbidv 2508 |
. . . . . . . . 9
|
| 59 | 58, 10 | elrab2 2936 |
. . . . . . . 8
|
| 60 | 43, 55, 59 | sylanbrc 417 |
. . . . . . 7
|
| 61 | 46, 60 | jca 306 |
. . . . . 6
|
| 62 | 61 | ex 115 |
. . . . 5
|
| 63 | 62 | reximdva 2609 |
. . . 4
|
| 64 | 33, 63 | mpd 13 |
. . 3
|
| 65 | 16, 64 | rexlimddv 2629 |
. 2
|
| 66 | 13, 65 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-1o 6514 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-lti 7435 df-plpq 7472 df-mpq 7473 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-mqqs 7478 df-1nqqs 7479 df-rq 7480 df-ltnqqs 7481 |
| This theorem is referenced by: cauappcvgprlemrnd 7778 |
| Copyright terms: Public domain | W3C validator |