| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemopl | Unicode version | ||
| Description: Lemma for cauappcvgpr 7837. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemopl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6001 |
. . . . . . 7
| |
| 2 | 1 | breq1d 4092 |
. . . . . 6
|
| 3 | 2 | rexbidv 2531 |
. . . . 5
|
| 4 | cauappcvgpr.lim |
. . . . . . 7
| |
| 5 | 4 | fveq2i 5626 |
. . . . . 6
|
| 6 | nqex 7538 |
. . . . . . . 8
| |
| 7 | 6 | rabex 4227 |
. . . . . . 7
|
| 8 | 6 | rabex 4227 |
. . . . . . 7
|
| 9 | 7, 8 | op1st 6282 |
. . . . . 6
|
| 10 | 5, 9 | eqtri 2250 |
. . . . 5
|
| 11 | 3, 10 | elrab2 2962 |
. . . 4
|
| 12 | 11 | simprbi 275 |
. . 3
|
| 13 | 12 | adantl 277 |
. 2
|
| 14 | simprr 531 |
. . . 4
| |
| 15 | ltbtwnnqq 7590 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | simplrl 535 |
. . . . . . . 8
| |
| 18 | 11 | simplbi 274 |
. . . . . . . . 9
|
| 19 | 18 | ad3antlr 493 |
. . . . . . . 8
|
| 20 | ltaddnq 7582 |
. . . . . . . 8
| |
| 21 | 17, 19, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | addcomnqg 7556 |
. . . . . . . 8
| |
| 23 | 17, 19, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 21, 23 | breqtrd 4108 |
. . . . . 6
|
| 25 | simprrl 539 |
. . . . . 6
| |
| 26 | ltsonq 7573 |
. . . . . . 7
| |
| 27 | ltrelnq 7540 |
. . . . . . 7
| |
| 28 | 26, 27 | sotri 5120 |
. . . . . 6
|
| 29 | 24, 25, 28 | syl2anc 411 |
. . . . 5
|
| 30 | simprl 529 |
. . . . . 6
| |
| 31 | ltexnqq 7583 |
. . . . . 6
| |
| 32 | 17, 30, 31 | syl2anc 411 |
. . . . 5
|
| 33 | 29, 32 | mpbid 147 |
. . . 4
|
| 34 | 25 | ad2antrr 488 |
. . . . . . . . . 10
|
| 35 | 19 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 36 | 17 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 37 | addcomnqg 7556 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
|
| 39 | 38 | breq1d 4092 |
. . . . . . . . . 10
|
| 40 | 34, 39 | mpbid 147 |
. . . . . . . . 9
|
| 41 | simpr 110 |
. . . . . . . . 9
| |
| 42 | 40, 41 | breqtrrd 4110 |
. . . . . . . 8
|
| 43 | simplr 528 |
. . . . . . . . 9
| |
| 44 | ltanqg 7575 |
. . . . . . . . 9
| |
| 45 | 35, 43, 36, 44 | syl3anc 1271 |
. . . . . . . 8
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . 7
|
| 47 | simprrr 540 |
. . . . . . . . . . 11
| |
| 48 | 47 | ad2antrr 488 |
. . . . . . . . . 10
|
| 49 | addcomnqg 7556 |
. . . . . . . . . . . . 13
| |
| 50 | 36, 43, 49 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 51 | 50, 41 | eqtr3d 2264 |
. . . . . . . . . . 11
|
| 52 | 51 | breq1d 4092 |
. . . . . . . . . 10
|
| 53 | 48, 52 | mpbird 167 |
. . . . . . . . 9
|
| 54 | rspe 2579 |
. . . . . . . . 9
| |
| 55 | 36, 53, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | oveq1 6001 |
. . . . . . . . . . 11
| |
| 57 | 56 | breq1d 4092 |
. . . . . . . . . 10
|
| 58 | 57 | rexbidv 2531 |
. . . . . . . . 9
|
| 59 | 58, 10 | elrab2 2962 |
. . . . . . . 8
|
| 60 | 43, 55, 59 | sylanbrc 417 |
. . . . . . 7
|
| 61 | 46, 60 | jca 306 |
. . . . . 6
|
| 62 | 61 | ex 115 |
. . . . 5
|
| 63 | 62 | reximdva 2632 |
. . . 4
|
| 64 | 33, 63 | mpd 13 |
. . 3
|
| 65 | 16, 64 | rexlimddv 2653 |
. 2
|
| 66 | 13, 65 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4377 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-1o 6552 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-pli 7480 df-mi 7481 df-lti 7482 df-plpq 7519 df-mpq 7520 df-enq 7522 df-nqqs 7523 df-plqqs 7524 df-mqqs 7525 df-1nqqs 7526 df-rq 7527 df-ltnqqs 7528 |
| This theorem is referenced by: cauappcvgprlemrnd 7825 |
| Copyright terms: Public domain | W3C validator |