ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopl Unicode version

Theorem cauappcvgprlemopl 7706
Description: Lemma for cauappcvgpr 7722. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemopl  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemopl
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 oveq1 5925 . . . . . . 7  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
21breq1d 4039 . . . . . 6  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
32rexbidv 2495 . . . . 5  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
4 cauappcvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
54fveq2i 5557 . . . . . 6  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6 nqex 7423 . . . . . . . 8  |-  Q.  e.  _V
76rabex 4173 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
86rabex 4173 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
97, 8op1st 6199 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
105, 9eqtri 2214 . . . . 5  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
113, 10elrab2 2919 . . . 4  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
1211simprbi 275 . . 3  |-  ( s  e.  ( 1st `  L
)  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
1312adantl 277 . 2  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
14 simprr 531 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  ( s  +Q  q )  <Q  ( F `  q )
)
15 ltbtwnnqq 7475 . . . 4  |-  ( ( s  +Q  q ) 
<Q  ( F `  q
)  <->  E. t  e.  Q.  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) )
1614, 15sylib 122 . . 3  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  E. t  e.  Q.  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) )
17 simplrl 535 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  e.  Q. )
1811simplbi 274 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
1918ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  s  e.  Q. )
20 ltaddnq 7467 . . . . . . . 8  |-  ( ( q  e.  Q.  /\  s  e.  Q. )  ->  q  <Q  ( q  +Q  s ) )
2117, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  (
q  +Q  s ) )
22 addcomnqg 7441 . . . . . . . 8  |-  ( ( q  e.  Q.  /\  s  e.  Q. )  ->  ( q  +Q  s
)  =  ( s  +Q  q ) )
2317, 19, 22syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( q  +Q  s )  =  ( s  +Q  q ) )
2421, 23breqtrd 4055 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  (
s  +Q  q ) )
25 simprrl 539 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( s  +Q  q )  <Q  t
)
26 ltsonq 7458 . . . . . . 7  |-  <Q  Or  Q.
27 ltrelnq 7425 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2826, 27sotri 5061 . . . . . 6  |-  ( ( q  <Q  ( s  +Q  q )  /\  (
s  +Q  q ) 
<Q  t )  ->  q  <Q  t )
2924, 25, 28syl2anc 411 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  t
)
30 simprl 529 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  t  e.  Q. )
31 ltexnqq 7468 . . . . . 6  |-  ( ( q  e.  Q.  /\  t  e.  Q. )  ->  ( q  <Q  t  <->  E. r  e.  Q.  (
q  +Q  r )  =  t ) )
3217, 30, 31syl2anc 411 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( q  <Q 
t  <->  E. r  e.  Q.  ( q  +Q  r
)  =  t ) )
3329, 32mpbid 147 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  E. r  e.  Q.  ( q  +Q  r
)  =  t )
3425ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  +Q  q
)  <Q  t )
3519ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
s  e.  Q. )
3617ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
q  e.  Q. )
37 addcomnqg 7441 . . . . . . . . . . . 12  |-  ( ( s  e.  Q.  /\  q  e.  Q. )  ->  ( s  +Q  q
)  =  ( q  +Q  s ) )
3835, 36, 37syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  +Q  q
)  =  ( q  +Q  s ) )
3938breq1d 4039 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( ( s  +Q  q )  <Q  t  <->  ( q  +Q  s ) 
<Q  t ) )
4034, 39mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  s
)  <Q  t )
41 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  r
)  =  t )
4240, 41breqtrrd 4057 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  s
)  <Q  ( q  +Q  r ) )
43 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
r  e.  Q. )
44 ltanqg 7460 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  r  e.  Q.  /\  q  e.  Q. )  ->  (
s  <Q  r  <->  ( q  +Q  s )  <Q  (
q  +Q  r ) ) )
4535, 43, 36, 44syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  <Q  r  <->  ( q  +Q  s ) 
<Q  ( q  +Q  r
) ) )
4642, 45mpbird 167 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
s  <Q  r )
47 simprrr 540 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  t  <Q  ( F `  q )
)
4847ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
t  <Q  ( F `  q ) )
49 addcomnqg 7441 . . . . . . . . . . . . 13  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( q  +Q  r
)  =  ( r  +Q  q ) )
5036, 43, 49syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  r
)  =  ( r  +Q  q ) )
5150, 41eqtr3d 2228 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( r  +Q  q
)  =  t )
5251breq1d 4039 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( ( r  +Q  q )  <Q  ( F `  q )  <->  t 
<Q  ( F `  q
) ) )
5348, 52mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( r  +Q  q
)  <Q  ( F `  q ) )
54 rspe 2543 . . . . . . . . 9  |-  ( ( q  e.  Q.  /\  ( r  +Q  q
)  <Q  ( F `  q ) )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( F `  q ) )
5536, 53, 54syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( F `  q ) )
56 oveq1 5925 . . . . . . . . . . 11  |-  ( l  =  r  ->  (
l  +Q  q )  =  ( r  +Q  q ) )
5756breq1d 4039 . . . . . . . . . 10  |-  ( l  =  r  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( r  +Q  q )  <Q  ( F `  q )
) )
5857rexbidv 2495 . . . . . . . . 9  |-  ( l  =  r  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
5958, 10elrab2 2919 . . . . . . . 8  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
6043, 55, 59sylanbrc 417 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
r  e.  ( 1st `  L ) )
6146, 60jca 306 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6261ex 115 . . . . 5  |-  ( ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  /\  r  e.  Q. )  ->  ( ( q  +Q  r )  =  t  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) ) )
6362reximdva 2596 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( E. r  e.  Q.  ( q  +Q  r )  =  t  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
6433, 63mpd 13 . . 3  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6516, 64rexlimddv 2616 . 2  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6613, 65rexlimddv 2616 1  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   <.cop 3621   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   1stc1st 6191   Q.cnq 7340    +Q cplq 7342    <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413
This theorem is referenced by:  cauappcvgprlemrnd  7710
  Copyright terms: Public domain W3C validator