ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemnbj Unicode version

Theorem caucvgprlemnbj 7779
Description: Lemma for caucvgpr 7794. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgprlemnbj.b  |-  ( ph  ->  B  e.  N. )
caucvgprlemnbj.j  |-  ( ph  ->  J  e.  N. )
Assertion
Ref Expression
caucvgprlemnbj  |-  ( ph  ->  -.  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  J
) )
Distinct variable groups:    B, k, n   
k, F, n    k, J, n
Allowed substitution hints:    ph( k, n)

Proof of Theorem caucvgprlemnbj
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.cau . . . . . . 7  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
2 caucvgprlemnbj.b . . . . . . . 8  |-  ( ph  ->  B  e.  N. )
3 caucvgprlemnbj.j . . . . . . . 8  |-  ( ph  ->  J  e.  N. )
4 breq1 4046 . . . . . . . . . 10  |-  ( n  =  B  ->  (
n  <N  k  <->  B  <N  k ) )
5 fveq2 5575 . . . . . . . . . . . 12  |-  ( n  =  B  ->  ( F `  n )  =  ( F `  B ) )
6 opeq1 3818 . . . . . . . . . . . . . . 15  |-  ( n  =  B  ->  <. n ,  1o >.  =  <. B ,  1o >. )
76eceq1d 6655 . . . . . . . . . . . . . 14  |-  ( n  =  B  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. B ,  1o >. ]  ~Q  )
87fveq2d 5579 . . . . . . . . . . . . 13  |-  ( n  =  B  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )
98oveq2d 5959 . . . . . . . . . . . 12  |-  ( n  =  B  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
105, 9breq12d 4056 . . . . . . . . . . 11  |-  ( n  =  B  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  B )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
115, 8oveq12d 5961 . . . . . . . . . . . 12  |-  ( n  =  B  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
1211breq2d 4055 . . . . . . . . . . 11  |-  ( n  =  B  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
1310, 12anbi12d 473 . . . . . . . . . 10  |-  ( n  =  B  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  B )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) )
144, 13imbi12d 234 . . . . . . . . 9  |-  ( n  =  B  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( B  <N  k  ->  ( ( F `  B )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
15 breq2 4047 . . . . . . . . . 10  |-  ( k  =  J  ->  ( B  <N  k  <->  B  <N  J ) )
16 fveq2 5575 . . . . . . . . . . . . 13  |-  ( k  =  J  ->  ( F `  k )  =  ( F `  J ) )
1716oveq1d 5958 . . . . . . . . . . . 12  |-  ( k  =  J  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  =  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
1817breq2d 4055 . . . . . . . . . . 11  |-  ( k  =  J  ->  (
( F `  B
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
1916breq1d 4053 . . . . . . . . . . 11  |-  ( k  =  J  ->  (
( F `  k
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
2018, 19anbi12d 473 . . . . . . . . . 10  |-  ( k  =  J  ->  (
( ( F `  B )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  B )  <Q  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) )
2115, 20imbi12d 234 . . . . . . . . 9  |-  ( k  =  J  ->  (
( B  <N  k  ->  ( ( F `  B )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )  <->  ( B  <N  J  ->  ( ( F `  B )  <Q  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
2214, 21rspc2v 2889 . . . . . . . 8  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( B  <N  J  -> 
( ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
232, 3, 22syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( B  <N  J  -> 
( ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
241, 23mpd 13 . . . . . 6  |-  ( ph  ->  ( B  <N  J  -> 
( ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) )
2524imp 124 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  <Q  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
2625simprd 114 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) )
27 caucvgpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> Q. )
2827, 2ffvelcdmd 5715 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  Q. )
29 nnnq 7534 . . . . . . . 8  |-  ( B  e.  N.  ->  [ <. B ,  1o >. ]  ~Q  e.  Q. )
30 recclnq 7504 . . . . . . . 8  |-  ( [
<. B ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )
312, 29, 303syl 17 . . . . . . 7  |-  ( ph  ->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )
32 addclnq 7487 . . . . . . 7  |-  ( ( ( F `  B
)  e.  Q.  /\  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q. )
3328, 31, 32syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q. )
34 nnnq 7534 . . . . . . 7  |-  ( J  e.  N.  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
35 recclnq 7504 . . . . . . 7  |-  ( [
<. J ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
363, 34, 353syl 17 . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
37 ltaddnq 7519 . . . . . 6  |-  ( ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
3833, 36, 37syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
3938adantr 276 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
40 ltsonq 7510 . . . . 5  |-  <Q  Or  Q.
41 ltrelnq 7477 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
4240, 41sotri 5077 . . . 4  |-  ( ( ( F `  J
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  /\  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
4326, 39, 42syl2anc 411 . . 3  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
44 ltaddnq 7519 . . . . . . 7  |-  ( ( ( F `  B
)  e.  Q.  /\  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
4528, 31, 44syl2anc 411 . . . . . 6  |-  ( ph  ->  ( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
4645adantr 276 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  ( F `  B )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
) )
47 fveq2 5575 . . . . . . 7  |-  ( B  =  J  ->  ( F `  B )  =  ( F `  J ) )
4847breq1d 4053 . . . . . 6  |-  ( B  =  J  ->  (
( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
4948adantl 277 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
5046, 49mpbid 147 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
) )
5138adantr 276 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
5250, 51, 42syl2anc 411 . . 3  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <Q  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
53 breq1 4046 . . . . . . . . . 10  |-  ( n  =  J  ->  (
n  <N  k  <->  J  <N  k ) )
54 fveq2 5575 . . . . . . . . . . . 12  |-  ( n  =  J  ->  ( F `  n )  =  ( F `  J ) )
55 opeq1 3818 . . . . . . . . . . . . . . 15  |-  ( n  =  J  ->  <. n ,  1o >.  =  <. J ,  1o >. )
5655eceq1d 6655 . . . . . . . . . . . . . 14  |-  ( n  =  J  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
5756fveq2d 5579 . . . . . . . . . . . . 13  |-  ( n  =  J  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
5857oveq2d 5959 . . . . . . . . . . . 12  |-  ( n  =  J  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
5954, 58breq12d 4056 . . . . . . . . . . 11  |-  ( n  =  J  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6054, 57oveq12d 5961 . . . . . . . . . . . 12  |-  ( n  =  J  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6160breq2d 4055 . . . . . . . . . . 11  |-  ( n  =  J  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6259, 61anbi12d 473 . . . . . . . . . 10  |-  ( n  =  J  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  J )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) )
6353, 62imbi12d 234 . . . . . . . . 9  |-  ( n  =  J  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( J  <N  k  ->  ( ( F `  J )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
64 breq2 4047 . . . . . . . . . 10  |-  ( k  =  B  ->  ( J  <N  k  <->  J  <N  B ) )
65 fveq2 5575 . . . . . . . . . . . . 13  |-  ( k  =  B  ->  ( F `  k )  =  ( F `  B ) )
6665oveq1d 5958 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  =  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6766breq2d 4055 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
( F `  J
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6865breq1d 4053 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
( F `  k
)  <Q  ( ( F `
 J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <->  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6967, 68anbi12d 473 . . . . . . . . . 10  |-  ( k  =  B  ->  (
( ( F `  J )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) )
7064, 69imbi12d 234 . . . . . . . . 9  |-  ( k  =  B  ->  (
( J  <N  k  ->  ( ( F `  J )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )  <->  ( J  <N  B  ->  ( ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
7163, 70rspc2v 2889 . . . . . . . 8  |-  ( ( J  e.  N.  /\  B  e.  N. )  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( J  <N  B  -> 
( ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
723, 2, 71syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( J  <N  B  -> 
( ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
731, 72mpd 13 . . . . . 6  |-  ( ph  ->  ( J  <N  B  -> 
( ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) )
7473imp 124 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
7574simpld 112 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
76 ltanqg 7512 . . . . . . . 8  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
7776adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
78 addcomnqg 7493 . . . . . . . 8  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
7978adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
8077, 28, 33, 36, 79caovord2d 6115 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  <->  ( ( F `
 B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) ) )
8145, 80mpbid 147 . . . . 5  |-  ( ph  ->  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
8281adantr 276 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
8340, 41sotri 5077 . . . 4  |-  ( ( ( F `  J
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  /\  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
8475, 82, 83syl2anc 411 . . 3  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
85 pitri3or 7434 . . . 4  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
862, 3, 85syl2anc 411 . . 3  |-  ( ph  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
8743, 52, 84, 86mpjao3dan 1319 . 2  |-  ( ph  ->  ( F `  J
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
8827, 3ffvelcdmd 5715 . . . 4  |-  ( ph  ->  ( F `  J
)  e.  Q. )
89 addclnq 7487 . . . . 5  |-  ( ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. )
9033, 36, 89syl2anc 411 . . . 4  |-  ( ph  ->  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. )
91 so2nr 4367 . . . . 5  |-  ( ( 
<Q  Or  Q.  /\  (
( F `  J
)  e.  Q.  /\  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. ) )  ->  -.  ( ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) ) )
9240, 91mpan 424 . . . 4  |-  ( ( ( F `  J
)  e.  Q.  /\  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. )  ->  -.  ( ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) ) )
9388, 90, 92syl2anc 411 . . 3  |-  ( ph  ->  -.  ( ( F `
 J )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  /\  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
( F `  J
) ) )
94 imnan 691 . . 3  |-  ( ( ( F `  J
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  ->  -.  ( (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) )  <->  -.  (
( F `  J
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  /\  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  J
) ) )
9593, 94sylibr 134 . 2  |-  ( ph  ->  ( ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  ->  -.  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) ) )
9687, 95mpd 13 1  |-  ( ph  ->  -.  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  J
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   <.cop 3635   class class class wbr 4043    Or wor 4341   -->wf 5266   ` cfv 5270  (class class class)co 5943   1oc1o 6494   [cec 6617   N.cnpi 7384    <N clti 7387    ~Q ceq 7391   Q.cnq 7392    +Q cplq 7394   *Qcrq 7396    <Q cltq 7397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465
This theorem is referenced by:  caucvgprlemladdrl  7790
  Copyright terms: Public domain W3C validator