ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemnbj Unicode version

Theorem caucvgprlemnbj 7423
Description: Lemma for caucvgpr 7438. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgprlemnbj.b  |-  ( ph  ->  B  e.  N. )
caucvgprlemnbj.j  |-  ( ph  ->  J  e.  N. )
Assertion
Ref Expression
caucvgprlemnbj  |-  ( ph  ->  -.  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  J
) )
Distinct variable groups:    B, k, n   
k, F, n    k, J, n
Allowed substitution hints:    ph( k, n)

Proof of Theorem caucvgprlemnbj
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.cau . . . . . . 7  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
2 caucvgprlemnbj.b . . . . . . . 8  |-  ( ph  ->  B  e.  N. )
3 caucvgprlemnbj.j . . . . . . . 8  |-  ( ph  ->  J  e.  N. )
4 breq1 3898 . . . . . . . . . 10  |-  ( n  =  B  ->  (
n  <N  k  <->  B  <N  k ) )
5 fveq2 5375 . . . . . . . . . . . 12  |-  ( n  =  B  ->  ( F `  n )  =  ( F `  B ) )
6 opeq1 3671 . . . . . . . . . . . . . . 15  |-  ( n  =  B  ->  <. n ,  1o >.  =  <. B ,  1o >. )
76eceq1d 6419 . . . . . . . . . . . . . 14  |-  ( n  =  B  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. B ,  1o >. ]  ~Q  )
87fveq2d 5379 . . . . . . . . . . . . 13  |-  ( n  =  B  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )
98oveq2d 5744 . . . . . . . . . . . 12  |-  ( n  =  B  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
105, 9breq12d 3908 . . . . . . . . . . 11  |-  ( n  =  B  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  B )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
115, 8oveq12d 5746 . . . . . . . . . . . 12  |-  ( n  =  B  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
1211breq2d 3907 . . . . . . . . . . 11  |-  ( n  =  B  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
1310, 12anbi12d 462 . . . . . . . . . 10  |-  ( n  =  B  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  B )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) )
144, 13imbi12d 233 . . . . . . . . 9  |-  ( n  =  B  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( B  <N  k  ->  ( ( F `  B )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
15 breq2 3899 . . . . . . . . . 10  |-  ( k  =  J  ->  ( B  <N  k  <->  B  <N  J ) )
16 fveq2 5375 . . . . . . . . . . . . 13  |-  ( k  =  J  ->  ( F `  k )  =  ( F `  J ) )
1716oveq1d 5743 . . . . . . . . . . . 12  |-  ( k  =  J  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  =  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
1817breq2d 3907 . . . . . . . . . . 11  |-  ( k  =  J  ->  (
( F `  B
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
1916breq1d 3905 . . . . . . . . . . 11  |-  ( k  =  J  ->  (
( F `  k
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
2018, 19anbi12d 462 . . . . . . . . . 10  |-  ( k  =  J  ->  (
( ( F `  B )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  B )  <Q  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) )
2115, 20imbi12d 233 . . . . . . . . 9  |-  ( k  =  J  ->  (
( B  <N  k  ->  ( ( F `  B )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )  <->  ( B  <N  J  ->  ( ( F `  B )  <Q  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
2214, 21rspc2v 2772 . . . . . . . 8  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( B  <N  J  -> 
( ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
232, 3, 22syl2anc 406 . . . . . . 7  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( B  <N  J  -> 
( ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) ) )
241, 23mpd 13 . . . . . 6  |-  ( ph  ->  ( B  <N  J  -> 
( ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) ) )
2524imp 123 . . . . 5  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  <Q  ( ( F `  J )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  /\  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
2625simprd 113 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) )
27 caucvgpr.f . . . . . . . 8  |-  ( ph  ->  F : N. --> Q. )
2827, 2ffvelrnd 5510 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  Q. )
29 nnnq 7178 . . . . . . . 8  |-  ( B  e.  N.  ->  [ <. B ,  1o >. ]  ~Q  e.  Q. )
30 recclnq 7148 . . . . . . . 8  |-  ( [
<. B ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )
312, 29, 303syl 17 . . . . . . 7  |-  ( ph  ->  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )
32 addclnq 7131 . . . . . . 7  |-  ( ( ( F `  B
)  e.  Q.  /\  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q. )
3328, 31, 32syl2anc 406 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q. )
34 nnnq 7178 . . . . . . 7  |-  ( J  e.  N.  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
35 recclnq 7148 . . . . . . 7  |-  ( [
<. J ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
363, 34, 353syl 17 . . . . . 6  |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
37 ltaddnq 7163 . . . . . 6  |-  ( ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
3833, 36, 37syl2anc 406 . . . . 5  |-  ( ph  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
3938adantr 272 . . . 4  |-  ( (
ph  /\  B  <N  J )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
40 ltsonq 7154 . . . . 5  |-  <Q  Or  Q.
41 ltrelnq 7121 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
4240, 41sotri 4892 . . . 4  |-  ( ( ( F `  J
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  /\  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
4326, 39, 42syl2anc 406 . . 3  |-  ( (
ph  /\  B  <N  J )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
44 ltaddnq 7163 . . . . . . 7  |-  ( ( ( F `  B
)  e.  Q.  /\  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
4528, 31, 44syl2anc 406 . . . . . 6  |-  ( ph  ->  ( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) ) )
4645adantr 272 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  ( F `  B )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
) )
47 fveq2 5375 . . . . . . 7  |-  ( B  =  J  ->  ( F `  B )  =  ( F `  J ) )
4847breq1d 3905 . . . . . 6  |-  ( B  =  J  ->  (
( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
4948adantl 273 . . . . 5  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
) ) )
5046, 49mpbid 146 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
) )
5138adantr 272 . . . 4  |-  ( (
ph  /\  B  =  J )  ->  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
5250, 51, 42syl2anc 406 . . 3  |-  ( (
ph  /\  B  =  J )  ->  ( F `  J )  <Q  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
53 breq1 3898 . . . . . . . . . 10  |-  ( n  =  J  ->  (
n  <N  k  <->  J  <N  k ) )
54 fveq2 5375 . . . . . . . . . . . 12  |-  ( n  =  J  ->  ( F `  n )  =  ( F `  J ) )
55 opeq1 3671 . . . . . . . . . . . . . . 15  |-  ( n  =  J  ->  <. n ,  1o >.  =  <. J ,  1o >. )
5655eceq1d 6419 . . . . . . . . . . . . . 14  |-  ( n  =  J  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
5756fveq2d 5379 . . . . . . . . . . . . 13  |-  ( n  =  J  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
5857oveq2d 5744 . . . . . . . . . . . 12  |-  ( n  =  J  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
5954, 58breq12d 3908 . . . . . . . . . . 11  |-  ( n  =  J  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6054, 57oveq12d 5746 . . . . . . . . . . . 12  |-  ( n  =  J  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6160breq2d 3907 . . . . . . . . . . 11  |-  ( n  =  J  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6259, 61anbi12d 462 . . . . . . . . . 10  |-  ( n  =  J  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  J )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) )
6353, 62imbi12d 233 . . . . . . . . 9  |-  ( n  =  J  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( J  <N  k  ->  ( ( F `  J )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
64 breq2 3899 . . . . . . . . . 10  |-  ( k  =  B  ->  ( J  <N  k  <->  J  <N  B ) )
65 fveq2 5375 . . . . . . . . . . . . 13  |-  ( k  =  B  ->  ( F `  k )  =  ( F `  B ) )
6665oveq1d 5743 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  =  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
6766breq2d 3907 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
( F `  J
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6865breq1d 3905 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
( F `  k
)  <Q  ( ( F `
 J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <->  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
6967, 68anbi12d 462 . . . . . . . . . 10  |-  ( k  =  B  ->  (
( ( F `  J )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) )
7064, 69imbi12d 233 . . . . . . . . 9  |-  ( k  =  B  ->  (
( J  <N  k  ->  ( ( F `  J )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )  <->  ( J  <N  B  ->  ( ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
7163, 70rspc2v 2772 . . . . . . . 8  |-  ( ( J  e.  N.  /\  B  e.  N. )  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( J  <N  B  -> 
( ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
723, 2, 71syl2anc 406 . . . . . . 7  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  -> 
( J  <N  B  -> 
( ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) ) )
731, 72mpd 13 . . . . . 6  |-  ( ph  ->  ( J  <N  B  -> 
( ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) ) )
7473imp 123 . . . . 5  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  J )  <Q  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( F `  B )  <Q  (
( F `  J
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
7574simpld 111 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
76 ltanqg 7156 . . . . . . . 8  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
7776adantl 273 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q.  /\  h  e.  Q. ) )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
78 addcomnqg 7137 . . . . . . . 8  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
7978adantl 273 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  Q.  /\  g  e. 
Q. ) )  -> 
( f  +Q  g
)  =  ( g  +Q  f ) )
8077, 28, 33, 36, 79caovord2d 5894 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  <Q  (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  <->  ( ( F `
 B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) ) )
8145, 80mpbid 146 . . . . 5  |-  ( ph  ->  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
8281adantr 272 . . . 4  |-  ( (
ph  /\  J  <N  B )  ->  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
8340, 41sotri 4892 . . . 4  |-  ( ( ( F `  J
)  <Q  ( ( F `
 B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  /\  ( ( F `  B )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
8475, 82, 83syl2anc 406 . . 3  |-  ( (
ph  /\  J  <N  B )  ->  ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) )
85 pitri3or 7078 . . . 4  |-  ( ( B  e.  N.  /\  J  e.  N. )  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
862, 3, 85syl2anc 406 . . 3  |-  ( ph  ->  ( B  <N  J  \/  B  =  J  \/  J  <N  B ) )
8743, 52, 84, 86mpjao3dan 1268 . 2  |-  ( ph  ->  ( F `  J
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
8827, 3ffvelrnd 5510 . . . 4  |-  ( ph  ->  ( F `  J
)  e.  Q. )
89 addclnq 7131 . . . . 5  |-  ( ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. )
9033, 36, 89syl2anc 406 . . . 4  |-  ( ph  ->  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. )
91 so2nr 4203 . . . . 5  |-  ( ( 
<Q  Or  Q.  /\  (
( F `  J
)  e.  Q.  /\  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. ) )  ->  -.  ( ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) ) )
9240, 91mpan 418 . . . 4  |-  ( ( ( F `  J
)  e.  Q.  /\  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  e. 
Q. )  ->  -.  ( ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  /\  ( (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) ) )
9388, 90, 92syl2anc 406 . . 3  |-  ( ph  ->  -.  ( ( F `
 J )  <Q 
( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  /\  ( ( ( F `
 B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
( F `  J
) ) )
94 imnan 662 . . 3  |-  ( ( ( F `  J
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  ->  -.  ( (
( F `  B
)  +Q  ( *Q
`  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) )  <->  -.  (
( F `  J
)  <Q  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  /\  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  J
) ) )
9593, 94sylibr 133 . 2  |-  ( ph  ->  ( ( F `  J )  <Q  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  ->  -.  (
( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
)  <Q  ( F `  J ) ) )
9687, 95mpd 13 1  |-  ( ph  ->  -.  ( ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  ( F `  J
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 944    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2390   <.cop 3496   class class class wbr 3895    Or wor 4177   -->wf 5077   ` cfv 5081  (class class class)co 5728   1oc1o 6260   [cec 6381   N.cnpi 7028    <N clti 7031    ~Q ceq 7035   Q.cnq 7036    +Q cplq 7038   *Qcrq 7040    <Q cltq 7041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109
This theorem is referenced by:  caucvgprlemladdrl  7434
  Copyright terms: Public domain W3C validator