ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnsym2 Unicode version

Theorem ltnsym2 8134
Description: 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ltnsym2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( A  < 
B  /\  B  <  A ) )

Proof of Theorem ltnsym2
StepHypRef Expression
1 ltso 8121 . 2  |-  <  Or  RR
2 so2nr 4357 . 2  |-  ( (  <  Or  RR  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  -.  ( A  <  B  /\  B  <  A ) )
31, 2mpan 424 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  ( A  < 
B  /\  B  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4034    Or wor 4331   RRcr 7895    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-po 4332  df-iso 4333  df-xp 4670  df-pnf 8080  df-mnf 8081  df-ltxr 8083
This theorem is referenced by:  reapltxor  8633  msqge0  8660  mulge0  8663  ivthinclemlopn  14956  lgsquadlem3  15404
  Copyright terms: Public domain W3C validator