ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc Unicode version

Theorem sucinc 6531
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
Hypothesis
Ref Expression
sucinc.1  |-  F  =  ( z  e.  _V  |->  suc  z )
Assertion
Ref Expression
sucinc  |-  A. x  x  C_  ( F `  x )
Distinct variable group:    x, z
Allowed substitution hints:    F( x, z)

Proof of Theorem sucinc
StepHypRef Expression
1 sssucid 4462 . . 3  |-  x  C_  suc  x
2 vex 2775 . . . 4  |-  x  e. 
_V
32sucex 4547 . . . 4  |-  suc  x  e.  _V
4 suceq 4449 . . . . 5  |-  ( z  =  x  ->  suc  z  =  suc  x )
5 sucinc.1 . . . . 5  |-  F  =  ( z  e.  _V  |->  suc  z )
64, 5fvmptg 5655 . . . 4  |-  ( ( x  e.  _V  /\  suc  x  e.  _V )  ->  ( F `  x
)  =  suc  x
)
72, 3, 6mp2an 426 . . 3  |-  ( F `
 x )  =  suc  x
81, 7sseqtrri 3228 . 2  |-  x  C_  ( F `  x )
98ax-gen 1472 1  |-  A. x  x  C_  ( F `  x )
Colors of variables: wff set class
Syntax hints:   A.wal 1371    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166    |-> cmpt 4105   suc csuc 4412   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator