ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc Unicode version

Theorem sucinc 6424
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.)
Hypothesis
Ref Expression
sucinc.1  |-  F  =  ( z  e.  _V  |->  suc  z )
Assertion
Ref Expression
sucinc  |-  A. x  x  C_  ( F `  x )
Distinct variable group:    x, z
Allowed substitution hints:    F( x, z)

Proof of Theorem sucinc
StepHypRef Expression
1 sssucid 4400 . . 3  |-  x  C_  suc  x
2 vex 2733 . . . 4  |-  x  e. 
_V
32sucex 4483 . . . 4  |-  suc  x  e.  _V
4 suceq 4387 . . . . 5  |-  ( z  =  x  ->  suc  z  =  suc  x )
5 sucinc.1 . . . . 5  |-  F  =  ( z  e.  _V  |->  suc  z )
64, 5fvmptg 5572 . . . 4  |-  ( ( x  e.  _V  /\  suc  x  e.  _V )  ->  ( F `  x
)  =  suc  x
)
72, 3, 6mp2an 424 . . 3  |-  ( F `
 x )  =  suc  x
81, 7sseqtrri 3182 . 2  |-  x  C_  ( F `  x )
98ax-gen 1442 1  |-  A. x  x  C_  ( F `  x )
Colors of variables: wff set class
Syntax hints:   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121    |-> cmpt 4050   suc csuc 4350   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator