| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssucid | GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3367 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 4461 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3259 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3195 ⊆ wss 3197 {csn 3666 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-suc 4461 |
| This theorem is referenced by: trsuc 4512 ordsuc 4654 0elnn 4710 sucinc 6589 sucinc2 6590 oasuc 6608 phplem4 7012 phplem4dom 7019 phplem4on 7025 fiintim 7089 fidcenumlemrk 7117 fidcenumlemr 7118 bj-nntrans 16272 |
| Copyright terms: Public domain | W3C validator |