| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssucid | GIF version | ||
| Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3335 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
| 2 | df-suc 4416 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 3 | 1, 2 | sseqtrri 3227 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3163 ⊆ wss 3165 {csn 3632 suc csuc 4410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-suc 4416 |
| This theorem is referenced by: trsuc 4467 ordsuc 4609 0elnn 4665 sucinc 6521 sucinc2 6522 oasuc 6540 phplem4 6934 phplem4dom 6941 phplem4on 6946 fiintim 7010 fidcenumlemrk 7038 fidcenumlemr 7039 bj-nntrans 15751 |
| Copyright terms: Public domain | W3C validator |