ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssucid GIF version

Theorem sssucid 4446
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
Assertion
Ref Expression
sssucid 𝐴 ⊆ suc 𝐴

Proof of Theorem sssucid
StepHypRef Expression
1 ssun1 3322 . 2 𝐴 ⊆ (𝐴 ∪ {𝐴})
2 df-suc 4402 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2sseqtrri 3214 1 𝐴 ⊆ suc 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3151  wss 3153  {csn 3618  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-suc 4402
This theorem is referenced by:  trsuc  4453  ordsuc  4595  0elnn  4651  sucinc  6498  sucinc2  6499  oasuc  6517  phplem4  6911  phplem4dom  6918  phplem4on  6923  fiintim  6985  fidcenumlemrk  7013  fidcenumlemr  7014  bj-nntrans  15443
  Copyright terms: Public domain W3C validator