ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssucid GIF version

Theorem sssucid 4505
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
Assertion
Ref Expression
sssucid 𝐴 ⊆ suc 𝐴

Proof of Theorem sssucid
StepHypRef Expression
1 ssun1 3367 . 2 𝐴 ⊆ (𝐴 ∪ {𝐴})
2 df-suc 4461 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2sseqtrri 3259 1 𝐴 ⊆ suc 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3195  wss 3197  {csn 3666  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-suc 4461
This theorem is referenced by:  trsuc  4512  ordsuc  4654  0elnn  4710  sucinc  6589  sucinc2  6590  oasuc  6608  phplem4  7012  phplem4dom  7019  phplem4on  7025  fiintim  7089  fidcenumlemrk  7117  fidcenumlemr  7118  bj-nntrans  16272
  Copyright terms: Public domain W3C validator