ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssucid GIF version

Theorem sssucid 4297
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
Assertion
Ref Expression
sssucid 𝐴 ⊆ suc 𝐴

Proof of Theorem sssucid
StepHypRef Expression
1 ssun1 3205 . 2 𝐴 ⊆ (𝐴 ∪ {𝐴})
2 df-suc 4253 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2sseqtr4i 3098 1 𝐴 ⊆ suc 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3035  wss 3037  {csn 3493  suc csuc 4247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-suc 4253
This theorem is referenced by:  trsuc  4304  ordsuc  4438  0elnn  4492  sucinc  6295  sucinc2  6296  oasuc  6314  phplem4  6702  phplem4dom  6709  phplem4on  6714  fiintim  6770  fidcenumlemrk  6794  fidcenumlemr  6795  bj-nntrans  12841
  Copyright terms: Public domain W3C validator