![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sssucid | GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3205 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 4253 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtr4i 3098 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3035 ⊆ wss 3037 {csn 3493 suc csuc 4247 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-suc 4253 |
This theorem is referenced by: trsuc 4304 ordsuc 4438 0elnn 4492 sucinc 6295 sucinc2 6296 oasuc 6314 phplem4 6702 phplem4dom 6709 phplem4on 6714 fiintim 6770 fidcenumlemrk 6794 fidcenumlemr 6795 bj-nntrans 12841 |
Copyright terms: Public domain | W3C validator |