ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssucid GIF version

Theorem sssucid 4460
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
Assertion
Ref Expression
sssucid 𝐴 ⊆ suc 𝐴

Proof of Theorem sssucid
StepHypRef Expression
1 ssun1 3335 . 2 𝐴 ⊆ (𝐴 ∪ {𝐴})
2 df-suc 4416 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2sseqtrri 3227 1 𝐴 ⊆ suc 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3163  wss 3165  {csn 3632  suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-suc 4416
This theorem is referenced by:  trsuc  4467  ordsuc  4609  0elnn  4665  sucinc  6521  sucinc2  6522  oasuc  6540  phplem4  6934  phplem4dom  6941  phplem4on  6946  fiintim  7010  fidcenumlemrk  7038  fidcenumlemr  7039  bj-nntrans  15751
  Copyright terms: Public domain W3C validator