ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sssucid GIF version

Theorem sssucid 4450
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.)
Assertion
Ref Expression
sssucid 𝐴 ⊆ suc 𝐴

Proof of Theorem sssucid
StepHypRef Expression
1 ssun1 3326 . 2 𝐴 ⊆ (𝐴 ∪ {𝐴})
2 df-suc 4406 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
31, 2sseqtrri 3218 1 𝐴 ⊆ suc 𝐴
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157  {csn 3622  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-suc 4406
This theorem is referenced by:  trsuc  4457  ordsuc  4599  0elnn  4655  sucinc  6503  sucinc2  6504  oasuc  6522  phplem4  6916  phplem4dom  6923  phplem4on  6928  fiintim  6992  fidcenumlemrk  7020  fidcenumlemr  7021  bj-nntrans  15597
  Copyright terms: Public domain W3C validator