![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sssucid | GIF version |
Description: A class is included in its own successor. Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized to arbitrary classes). (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
sssucid | ⊢ 𝐴 ⊆ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3322 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝐴}) | |
2 | df-suc 4402 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
3 | 1, 2 | sseqtrri 3214 | 1 ⊢ 𝐴 ⊆ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3151 ⊆ wss 3153 {csn 3618 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-suc 4402 |
This theorem is referenced by: trsuc 4453 ordsuc 4595 0elnn 4651 sucinc 6498 sucinc2 6499 oasuc 6517 phplem4 6911 phplem4dom 6918 phplem4on 6923 fiintim 6985 fidcenumlemrk 7013 fidcenumlemr 7014 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |