| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6532 |
. 2
| |
| 2 | 1 | elexi 2789 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-1o 6525 |
| This theorem is referenced by: 1lt2o 6551 map1 6928 rex2dom 6934 1domsn 6939 pw1fin 7033 exmidpw2en 7035 djuexb 7172 djurclr 7178 djurcl 7180 djurf1or 7185 djurf1o 7187 djuss 7198 infnninf 7252 infnninfOLD 7253 ismkvnex 7283 pr2cv1 7329 dju1p1e2 7336 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 djucomen 7359 djuassen 7360 pw1on 7372 pw1nel3 7377 sucpw1ne3 7378 sucpw1nel3 7379 fmelpw1o 7393 indpi 7490 prarloclemlt 7641 fxnn0nninf 10621 inftonninf 10624 nninfctlemfo 12476 nninfct 12477 enctlem 12918 fnpr2ob 13287 xpsfrnel 13291 djurclALT 15938 bj-charfun 15942 pw1map 16134 pw1mapen 16135 pwle2 16137 pw1nct 16142 nnnninfex 16161 nninfnfiinf 16162 |
| Copyright terms: Public domain | W3C validator |