| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6569 |
. 2
| |
| 2 | 1 | elexi 2812 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6562 |
| This theorem is referenced by: 1lt2o 6588 map1 6965 rex2dom 6971 1domsn 6976 pw1fin 7072 exmidpw2en 7074 djuexb 7211 djurclr 7217 djurcl 7219 djurf1or 7224 djurf1o 7226 djuss 7237 infnninf 7291 infnninfOLD 7292 ismkvnex 7322 pr2cv1 7368 dju1p1e2 7375 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 djucomen 7398 djuassen 7399 pw1on 7411 pw1nel3 7416 sucpw1ne3 7417 sucpw1nel3 7418 fmelpw1o 7432 indpi 7529 prarloclemlt 7680 fxnn0nninf 10661 inftonninf 10664 nninfctlemfo 12561 nninfct 12562 enctlem 13003 fnpr2ob 13373 xpsfrnel 13377 djurclALT 16166 bj-charfun 16170 pw1map 16361 pw1mapen 16362 pwle2 16364 pw1nct 16369 nnnninfex 16388 nninfnfiinf 16389 |
| Copyright terms: Public domain | W3C validator |