| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6509 |
. 2
| |
| 2 | 1 | elexi 2784 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 |
| This theorem is referenced by: 1lt2o 6528 map1 6904 rex2dom 6910 1domsn 6914 pw1fin 7007 exmidpw2en 7009 djuexb 7146 djurclr 7152 djurcl 7154 djurf1or 7159 djurf1o 7161 djuss 7172 infnninf 7226 infnninfOLD 7227 ismkvnex 7257 dju1p1e2 7305 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 djucomen 7328 djuassen 7329 pw1on 7338 pw1nel3 7343 sucpw1ne3 7344 sucpw1nel3 7345 indpi 7455 prarloclemlt 7606 fxnn0nninf 10584 inftonninf 10587 nninfctlemfo 12361 nninfct 12362 enctlem 12803 fnpr2ob 13172 xpsfrnel 13176 djurclALT 15742 fmelpw1o 15746 bj-charfun 15747 pwle2 15939 pw1nct 15944 nnnninfex 15963 nninfnfiinf 15964 |
| Copyright terms: Public domain | W3C validator |