![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version |
Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
1oex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6421 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2749 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-uni 3810 df-tr 4101 df-iord 4365 df-on 4367 df-suc 4370 df-1o 6414 |
This theorem is referenced by: 1lt2o 6440 map1 6809 1domsn 6816 pw1fin 6907 djuexb 7040 djurclr 7046 djurcl 7048 djurf1or 7053 djurf1o 7055 djuss 7066 infnninf 7119 infnninfOLD 7120 ismkvnex 7150 dju1p1e2 7193 exmidfodomrlemr 7198 exmidfodomrlemrALT 7199 djucomen 7212 djuassen 7213 pw1on 7222 pw1nel3 7227 sucpw1ne3 7228 sucpw1nel3 7229 indpi 7338 prarloclemlt 7489 fxnn0nninf 10433 inftonninf 10436 enctlem 12425 djurclALT 14414 fmelpw1o 14418 bj-charfun 14419 pwle2 14608 pw1nct 14612 |
Copyright terms: Public domain | W3C validator |