![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version |
Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
1oex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6478 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2772 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-1o 6471 |
This theorem is referenced by: 1lt2o 6497 map1 6868 1domsn 6875 pw1fin 6968 exmidpw2en 6970 djuexb 7105 djurclr 7111 djurcl 7113 djurf1or 7118 djurf1o 7120 djuss 7131 infnninf 7185 infnninfOLD 7186 ismkvnex 7216 dju1p1e2 7259 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 djucomen 7278 djuassen 7279 pw1on 7288 pw1nel3 7293 sucpw1ne3 7294 sucpw1nel3 7295 indpi 7404 prarloclemlt 7555 fxnn0nninf 10513 inftonninf 10516 nninfctlemfo 12180 nninfct 12181 enctlem 12592 fnpr2ob 12926 xpsfrnel 12930 djurclALT 15364 fmelpw1o 15368 bj-charfun 15369 pwle2 15559 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |