![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version |
Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
1oex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6476 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2772 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 |
This theorem is referenced by: 1lt2o 6495 map1 6866 1domsn 6873 pw1fin 6966 exmidpw2en 6968 djuexb 7103 djurclr 7109 djurcl 7111 djurf1or 7116 djurf1o 7118 djuss 7129 infnninf 7183 infnninfOLD 7184 ismkvnex 7214 dju1p1e2 7257 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 djucomen 7276 djuassen 7277 pw1on 7286 pw1nel3 7291 sucpw1ne3 7292 sucpw1nel3 7293 indpi 7402 prarloclemlt 7553 fxnn0nninf 10510 inftonninf 10513 nninfctlemfo 12177 nninfct 12178 enctlem 12589 fnpr2ob 12923 xpsfrnel 12927 djurclALT 15294 fmelpw1o 15298 bj-charfun 15299 pwle2 15489 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |