| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | Unicode version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6511 |
. 2
| |
| 2 | 1 | elexi 2784 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-1o 6504 |
| This theorem is referenced by: 1lt2o 6530 map1 6906 rex2dom 6912 1domsn 6916 pw1fin 7009 exmidpw2en 7011 djuexb 7148 djurclr 7154 djurcl 7156 djurf1or 7161 djurf1o 7163 djuss 7174 infnninf 7228 infnninfOLD 7229 ismkvnex 7259 dju1p1e2 7307 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 djucomen 7330 djuassen 7331 pw1on 7340 pw1nel3 7345 sucpw1ne3 7346 sucpw1nel3 7347 indpi 7457 prarloclemlt 7608 fxnn0nninf 10586 inftonninf 10589 nninfctlemfo 12394 nninfct 12395 enctlem 12836 fnpr2ob 13205 xpsfrnel 13209 djurclALT 15775 fmelpw1o 15779 bj-charfun 15780 pwle2 15972 pw1nct 15977 nnnninfex 15996 nninfnfiinf 15997 |
| Copyright terms: Public domain | W3C validator |