ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 Unicode version

Theorem f0dom0 5391
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5331 . . . 4  |-  ( X  =  (/)  ->  ( F : X --> Y  <->  F : (/) --> Y ) )
2 f0bi 5390 . . . . 5  |-  ( F : (/) --> Y  <->  F  =  (/) )
32biimpi 119 . . . 4  |-  ( F : (/) --> Y  ->  F  =  (/) )
41, 3syl6bi 162 . . 3  |-  ( X  =  (/)  ->  ( F : X --> Y  ->  F  =  (/) ) )
54com12 30 . 2  |-  ( F : X --> Y  -> 
( X  =  (/)  ->  F  =  (/) ) )
6 feq1 5330 . . . 4  |-  ( F  =  (/)  ->  ( F : X --> Y  <->  (/) : X --> Y ) )
7 fdm 5353 . . . . 5  |-  ( (/) : X --> Y  ->  dom  (/)  =  X )
8 dm0 4825 . . . . 5  |-  dom  (/)  =  (/)
97, 8eqtr3di 2218 . . . 4  |-  ( (/) : X --> Y  ->  X  =  (/) )
106, 9syl6bi 162 . . 3  |-  ( F  =  (/)  ->  ( F : X --> Y  ->  X  =  (/) ) )
1110com12 30 . 2  |-  ( F : X --> Y  -> 
( F  =  (/)  ->  X  =  (/) ) )
125, 11impbid 128 1  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   (/)c0 3414   dom cdm 4611   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator