ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 Unicode version

Theorem f0dom0 5421
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5361 . . . 4  |-  ( X  =  (/)  ->  ( F : X --> Y  <->  F : (/) --> Y ) )
2 f0bi 5420 . . . . 5  |-  ( F : (/) --> Y  <->  F  =  (/) )
32biimpi 120 . . . 4  |-  ( F : (/) --> Y  ->  F  =  (/) )
41, 3biimtrdi 163 . . 3  |-  ( X  =  (/)  ->  ( F : X --> Y  ->  F  =  (/) ) )
54com12 30 . 2  |-  ( F : X --> Y  -> 
( X  =  (/)  ->  F  =  (/) ) )
6 feq1 5360 . . . 4  |-  ( F  =  (/)  ->  ( F : X --> Y  <->  (/) : X --> Y ) )
7 fdm 5383 . . . . 5  |-  ( (/) : X --> Y  ->  dom  (/)  =  X )
8 dm0 4853 . . . . 5  |-  dom  (/)  =  (/)
97, 8eqtr3di 2235 . . . 4  |-  ( (/) : X --> Y  ->  X  =  (/) )
106, 9biimtrdi 163 . . 3  |-  ( F  =  (/)  ->  ( F : X --> Y  ->  X  =  (/) ) )
1110com12 30 . 2  |-  ( F : X --> Y  -> 
( F  =  (/)  ->  X  =  (/) ) )
125, 11impbid 129 1  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363   (/)c0 3434   dom cdm 4638   -->wf 5224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-fun 5230  df-fn 5231  df-f 5232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator