ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 Unicode version

Theorem f0dom0 5469
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5409 . . . 4  |-  ( X  =  (/)  ->  ( F : X --> Y  <->  F : (/) --> Y ) )
2 f0bi 5468 . . . . 5  |-  ( F : (/) --> Y  <->  F  =  (/) )
32biimpi 120 . . . 4  |-  ( F : (/) --> Y  ->  F  =  (/) )
41, 3biimtrdi 163 . . 3  |-  ( X  =  (/)  ->  ( F : X --> Y  ->  F  =  (/) ) )
54com12 30 . 2  |-  ( F : X --> Y  -> 
( X  =  (/)  ->  F  =  (/) ) )
6 feq1 5408 . . . 4  |-  ( F  =  (/)  ->  ( F : X --> Y  <->  (/) : X --> Y ) )
7 fdm 5431 . . . . 5  |-  ( (/) : X --> Y  ->  dom  (/)  =  X )
8 dm0 4892 . . . . 5  |-  dom  (/)  =  (/)
97, 8eqtr3di 2253 . . . 4  |-  ( (/) : X --> Y  ->  X  =  (/) )
106, 9biimtrdi 163 . . 3  |-  ( F  =  (/)  ->  ( F : X --> Y  ->  X  =  (/) ) )
1110com12 30 . 2  |-  ( F : X --> Y  -> 
( F  =  (/)  ->  X  =  (/) ) )
125, 11impbid 129 1  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   (/)c0 3460   dom cdm 4675   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator