ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0dom0 Unicode version

Theorem f0dom0 5324
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
Assertion
Ref Expression
f0dom0  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )

Proof of Theorem f0dom0
StepHypRef Expression
1 feq2 5264 . . . 4  |-  ( X  =  (/)  ->  ( F : X --> Y  <->  F : (/) --> Y ) )
2 f0bi 5323 . . . . 5  |-  ( F : (/) --> Y  <->  F  =  (/) )
32biimpi 119 . . . 4  |-  ( F : (/) --> Y  ->  F  =  (/) )
41, 3syl6bi 162 . . 3  |-  ( X  =  (/)  ->  ( F : X --> Y  ->  F  =  (/) ) )
54com12 30 . 2  |-  ( F : X --> Y  -> 
( X  =  (/)  ->  F  =  (/) ) )
6 feq1 5263 . . . 4  |-  ( F  =  (/)  ->  ( F : X --> Y  <->  (/) : X --> Y ) )
7 dm0 4761 . . . . 5  |-  dom  (/)  =  (/)
8 fdm 5286 . . . . 5  |-  ( (/) : X --> Y  ->  dom  (/)  =  X )
97, 8syl5reqr 2188 . . . 4  |-  ( (/) : X --> Y  ->  X  =  (/) )
106, 9syl6bi 162 . . 3  |-  ( F  =  (/)  ->  ( F : X --> Y  ->  X  =  (/) ) )
1110com12 30 . 2  |-  ( F : X --> Y  -> 
( F  =  (/)  ->  X  =  (/) ) )
125, 11impbid 128 1  |-  ( F : X --> Y  -> 
( X  =  (/)  <->  F  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332   (/)c0 3368   dom cdm 4547   -->wf 5127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator