![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eqr.1 |
![]() ![]() ![]() ![]() |
syl5eqr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5eqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2093 |
. 2
![]() ![]() ![]() ![]() |
3 | syl5eqr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5eq 2133 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: 3eqtr3g 2144 csbeq1a 2942 ssdifeq0 3369 pofun 4148 opabbi2dv 4598 funimaexg 5111 fresin 5202 f1imacnv 5283 foimacnv 5284 fsn2 5485 fmptpr 5503 funiunfvdm 5556 funiunfvdmf 5557 fcof1o 5582 f1opw2 5864 fnexALT 5898 eqerlem 6337 pmresg 6447 mapsn 6461 fopwdom 6606 mapen 6616 fiintim 6693 xpfi 6694 sbthlemi8 6727 sbthlemi9 6728 exmidfodomrlemim 6888 mul02 7926 recdivap 8246 fzpreddisj 9546 fzshftral 9583 qbtwnrelemcalc 9728 frec2uzrdg 9877 frecuzrdgrcl 9878 frecuzrdgsuc 9882 frecuzrdgrclt 9883 frecuzrdgg 9884 binom3 10132 bcn2 10233 hashfz1 10252 hashunlem 10273 hashfacen 10302 cnrecnv 10405 resqrexlemnm 10512 amgm2 10612 2zsupmax 10718 fisumss 10845 fsumcnv 10892 telfsumo 10921 fsumiun 10932 arisum2 10954 ege2le3 11022 efgt1p 11047 cos01bnd 11110 dfgcd3 11338 eucalgval 11375 sqrt2irrlem 11479 setsslid 11605 baspartn 11809 nninfsellemqall 12179 |
Copyright terms: Public domain | W3C validator |