ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrp1 Unicode version

Theorem algrp1 12078
Description: The value of the algorithm iterator  R at  ( K  +  1 ). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
algrp1  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  ( K  +  1 ) )  =  ( F `  ( R `  K ) ) )

Proof of Theorem algrp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . . 4  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
21fveq1i 5535 . . 3  |-  ( R `
 ( K  + 
1 ) )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( K  +  1 ) )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  K  e.  Z )
4 algrf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrdi 2282 . . . 4  |-  ( (
ph  /\  K  e.  Z )  ->  K  e.  ( ZZ>= `  M )
)
6 algrf.4 . . . . . 6  |-  ( ph  ->  A  e.  S )
76adantr 276 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  A  e.  S )
84, 7ialgrlemconst 12075 . . . 4  |-  ( ( ( ph  /\  K  e.  Z )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
9 algrf.5 . . . . . 6  |-  ( ph  ->  F : S --> S )
109adantr 276 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  F : S --> S )
1110ialgrlem1st 12074 . . . 4  |-  ( ( ( ph  /\  K  e.  Z )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( F  o.  1st ) y )  e.  S )
125, 8, 11seq3p1 10493 . . 3  |-  ( (
ph  /\  K  e.  Z )  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( K  +  1
) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  K ) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) ) )
132, 12eqtrid 2234 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  ( K  +  1 ) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  K ) ( F  o.  1st ) ( ( Z  X.  { A } ) `  ( K  +  1 ) ) ) )
14 algrf.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
154, 1, 14, 6, 9algrf 12077 . . . . 5  |-  ( ph  ->  R : Z --> S )
1615ffvelcdmda 5672 . . . 4  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  K )  e.  S )
174peano2uzs 9614 . . . . . 6  |-  ( K  e.  Z  ->  ( K  +  1 )  e.  Z )
18 fvconst2g 5751 . . . . . 6  |-  ( ( A  e.  S  /\  ( K  +  1
)  e.  Z )  ->  ( ( Z  X.  { A }
) `  ( K  +  1 ) )  =  A )
196, 17, 18syl2an 289 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  (
( Z  X.  { A } ) `  ( K  +  1 ) )  =  A )
2019, 7eqeltrd 2266 . . . 4  |-  ( (
ph  /\  K  e.  Z )  ->  (
( Z  X.  { A } ) `  ( K  +  1 ) )  e.  S )
21 algrflemg 6255 . . . 4  |-  ( ( ( R `  K
)  e.  S  /\  ( ( Z  X.  { A } ) `  ( K  +  1
) )  e.  S
)  ->  ( ( R `  K )
( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) )  =  ( F `
 ( R `  K ) ) )
2216, 20, 21syl2anc 411 . . 3  |-  ( (
ph  /\  K  e.  Z )  ->  (
( R `  K
) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) )  =  ( F `
 ( R `  K ) ) )
231fveq1i 5535 . . . 4  |-  ( R `
 K )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  K )
2423oveq1i 5906 . . 3  |-  ( ( R `  K ) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 K ) ( F  o.  1st )
( ( Z  X.  { A } ) `  ( K  +  1
) ) )
2522, 24eqtr3di 2237 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  ( F `  ( R `  K ) )  =  ( (  seq M
( ( F  o.  1st ) ,  ( Z  X.  { A }
) ) `  K
) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) ) )
2613, 25eqtr4d 2225 1  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  ( K  +  1 ) )  =  ( F `  ( R `  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {csn 3607    X. cxp 4642    o. ccom 4648   -->wf 5231   ` cfv 5235  (class class class)co 5896   1stc1st 6163   1c1 7842    + caddc 7844   ZZcz 9283   ZZ>=cuz 9558    seqcseq 10476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-seqfrec 10477
This theorem is referenced by:  alginv  12079  algcvg  12080  algcvga  12083  algfx  12084
  Copyright terms: Public domain W3C validator