ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrp1 Unicode version

Theorem algrp1 12401
Description: The value of the algorithm iterator  R at  ( K  +  1 ). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
algrp1  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  ( K  +  1 ) )  =  ( F `  ( R `  K ) ) )

Proof of Theorem algrp1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . . 4  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
21fveq1i 5579 . . 3  |-  ( R `
 ( K  + 
1 ) )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( K  +  1 ) )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  K  e.  Z )
4 algrf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrdi 2298 . . . 4  |-  ( (
ph  /\  K  e.  Z )  ->  K  e.  ( ZZ>= `  M )
)
6 algrf.4 . . . . . 6  |-  ( ph  ->  A  e.  S )
76adantr 276 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  A  e.  S )
84, 7ialgrlemconst 12398 . . . 4  |-  ( ( ( ph  /\  K  e.  Z )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
9 algrf.5 . . . . . 6  |-  ( ph  ->  F : S --> S )
109adantr 276 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  F : S --> S )
1110ialgrlem1st 12397 . . . 4  |-  ( ( ( ph  /\  K  e.  Z )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( F  o.  1st ) y )  e.  S )
125, 8, 11seq3p1 10612 . . 3  |-  ( (
ph  /\  K  e.  Z )  ->  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  ( K  +  1
) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  K ) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) ) )
132, 12eqtrid 2250 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  ( K  +  1 ) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  K ) ( F  o.  1st ) ( ( Z  X.  { A } ) `  ( K  +  1 ) ) ) )
14 algrf.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
154, 1, 14, 6, 9algrf 12400 . . . . 5  |-  ( ph  ->  R : Z --> S )
1615ffvelcdmda 5717 . . . 4  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  K )  e.  S )
174peano2uzs 9707 . . . . . 6  |-  ( K  e.  Z  ->  ( K  +  1 )  e.  Z )
18 fvconst2g 5800 . . . . . 6  |-  ( ( A  e.  S  /\  ( K  +  1
)  e.  Z )  ->  ( ( Z  X.  { A }
) `  ( K  +  1 ) )  =  A )
196, 17, 18syl2an 289 . . . . 5  |-  ( (
ph  /\  K  e.  Z )  ->  (
( Z  X.  { A } ) `  ( K  +  1 ) )  =  A )
2019, 7eqeltrd 2282 . . . 4  |-  ( (
ph  /\  K  e.  Z )  ->  (
( Z  X.  { A } ) `  ( K  +  1 ) )  e.  S )
21 algrflemg 6318 . . . 4  |-  ( ( ( R `  K
)  e.  S  /\  ( ( Z  X.  { A } ) `  ( K  +  1
) )  e.  S
)  ->  ( ( R `  K )
( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) )  =  ( F `
 ( R `  K ) ) )
2216, 20, 21syl2anc 411 . . 3  |-  ( (
ph  /\  K  e.  Z )  ->  (
( R `  K
) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) )  =  ( F `
 ( R `  K ) ) )
231fveq1i 5579 . . . 4  |-  ( R `
 K )  =  (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  K )
2423oveq1i 5956 . . 3  |-  ( ( R `  K ) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) )  =  ( (  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `
 K ) ( F  o.  1st )
( ( Z  X.  { A } ) `  ( K  +  1
) ) )
2522, 24eqtr3di 2253 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  ( F `  ( R `  K ) )  =  ( (  seq M
( ( F  o.  1st ) ,  ( Z  X.  { A }
) ) `  K
) ( F  o.  1st ) ( ( Z  X.  { A }
) `  ( K  +  1 ) ) ) )
2613, 25eqtr4d 2241 1  |-  ( (
ph  /\  K  e.  Z )  ->  ( R `  ( K  +  1 ) )  =  ( F `  ( R `  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {csn 3633    X. cxp 4674    o. ccom 4680   -->wf 5268   ` cfv 5272  (class class class)co 5946   1stc1st 6226   1c1 7928    + caddc 7930   ZZcz 9374   ZZ>=cuz 9650    seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595
This theorem is referenced by:  alginv  12402  algcvg  12403  algcvga  12406  algfx  12407
  Copyright terms: Public domain W3C validator