ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumclim3 Unicode version

Theorem isumclim3 11566
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that  j must not occur in  A. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1  |-  Z  =  ( ZZ>= `  M )
isumclim3.2  |-  ( ph  ->  M  e.  ZZ )
isumclim3.3  |-  ( ph  ->  F  e.  dom  ~~>  )
isumclim3.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumclim3.5  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  sum_ k  e.  ( M ... j ) A )
Assertion
Ref Expression
isumclim3  |-  ( ph  ->  F  ~~>  sum_ k  e.  Z  A )
Distinct variable groups:    A, j    j,
k, M    ph, j, k   
j, Z, k    j, F
Allowed substitution hints:    A( k)    F( k)

Proof of Theorem isumclim3
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3  |-  ( ph  ->  F  e.  dom  ~~>  )
2 climdm 11438 . . 3  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
31, 2sylib 122 . 2  |-  ( ph  ->  F  ~~>  (  ~~>  `  F
) )
4 isumclim3.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
5 isumclim3.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
6 eqidd 2194 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  Z  |->  A ) `  m ) )
7 isumclim3.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
87fmpttd 5713 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  A ) : Z --> CC )
98ffvelcdmda 5693 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  A ) `  m
)  e.  CC )
104, 5, 6, 9isum 11528 . . 3  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  A ) `  m )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  A ) ) ) )
117ralrimiva 2567 . . . 4  |-  ( ph  ->  A. k  e.  Z  A  e.  CC )
12 sumfct 11517 . . . 4  |-  ( A. k  e.  Z  A  e.  CC  ->  sum_ m  e.  Z  ( ( k  e.  Z  |->  A ) `
 m )  = 
sum_ k  e.  Z  A )
1311, 12syl 14 . . 3  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  A ) `  m )  =  sum_ k  e.  Z  A
)
14 seqex 10520 . . . . . . 7  |-  seq M
(  +  ,  ( k  e.  Z  |->  A ) )  e.  _V
1514a1i 9 . . . . . 6  |-  ( ph  ->  seq M (  +  ,  ( k  e.  Z  |->  A ) )  e.  _V )
16 isumclim3.5 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  sum_ k  e.  ( M ... j ) A )
17 simpl 109 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ph )
18 fvres 5578 . . . . . . . . . . 11  |-  ( m  e.  ( M ... j )  ->  (
( ( k  e.  Z  |->  A )  |`  ( M ... j ) ) `  m )  =  ( ( k  e.  Z  |->  A ) `
 m ) )
19 fzssuz 10131 . . . . . . . . . . . . . 14  |-  ( M ... j )  C_  ( ZZ>= `  M )
2019, 4sseqtrri 3214 . . . . . . . . . . . . 13  |-  ( M ... j )  C_  Z
21 resmpt 4990 . . . . . . . . . . . . 13  |-  ( ( M ... j ) 
C_  Z  ->  (
( k  e.  Z  |->  A )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j
)  |->  A ) )
2220, 21ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  Z  |->  A )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j ) 
|->  A )
2322fveq1i 5555 . . . . . . . . . . 11  |-  ( ( ( k  e.  Z  |->  A )  |`  ( M ... j ) ) `
 m )  =  ( ( k  e.  ( M ... j
)  |->  A ) `  m )
2418, 23eqtr3di 2241 . . . . . . . . . 10  |-  ( m  e.  ( M ... j )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  ( M ... j )  |->  A ) `  m ) )
2524sumeq2i 11507 . . . . . . . . 9  |-  sum_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  = 
sum_ m  e.  ( M ... j ) ( ( k  e.  ( M ... j ) 
|->  A ) `  m
)
26 ssralv 3243 . . . . . . . . . . 11  |-  ( ( M ... j ) 
C_  Z  ->  ( A. k  e.  Z  A  e.  CC  ->  A. k  e.  ( M ... j ) A  e.  CC ) )
2720, 11, 26mpsyl 65 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  ( M ... j ) A  e.  CC )
28 sumfct 11517 . . . . . . . . . 10  |-  ( A. k  e.  ( M ... j ) A  e.  CC  ->  sum_ m  e.  ( M ... j
) ( ( k  e.  ( M ... j )  |->  A ) `
 m )  = 
sum_ k  e.  ( M ... j ) A )
2927, 28syl 14 . . . . . . . . 9  |-  ( ph  -> 
sum_ m  e.  ( M ... j ) ( ( k  e.  ( M ... j ) 
|->  A ) `  m
)  =  sum_ k  e.  ( M ... j
) A )
3025, 29eqtrid 2238 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  ( M ... j ) ( ( k  e.  Z  |->  A ) `  m
)  =  sum_ k  e.  ( M ... j
) A )
3117, 30syl 14 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  sum_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  = 
sum_ k  e.  ( M ... j ) A )
32 eqidd 2194 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  A ) `  m )  =  ( ( k  e.  Z  |->  A ) `
 m ) )
33 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3433, 4eleqtrdi 2286 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
354eleq2i 2260 . . . . . . . . . 10  |-  ( m  e.  Z  <->  m  e.  ( ZZ>= `  M )
)
3635biimpri 133 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  M
)  ->  m  e.  Z )
3717, 36, 9syl2an 289 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  A ) `  m )  e.  CC )
3832, 34, 37fsum3ser 11540 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  sum_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  =  (  seq M (  +  ,  ( k  e.  Z  |->  A ) ) `  j ) )
3916, 31, 383eqtr2rd 2233 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  , 
( k  e.  Z  |->  A ) ) `  j )  =  ( F `  j ) )
404, 15, 1, 5, 39climeq 11442 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  A ) )  ~~>  x  <->  F  ~~>  x ) )
4140iotabidv 5237 . . . 4  |-  ( ph  ->  ( iota x  seq M (  +  , 
( k  e.  Z  |->  A ) )  ~~>  x )  =  ( iota x F 
~~>  x ) )
42 df-fv 5262 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  A ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  A ) )  ~~>  x )
43 df-fv 5262 . . . 4  |-  (  ~~>  `  F
)  =  ( iota
x F  ~~>  x )
4441, 42, 433eqtr4g 2251 . . 3  |-  ( ph  ->  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  A ) ) )  =  (  ~~>  `
 F ) )
4510, 13, 443eqtr3d 2234 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  (  ~~>  `  F
) )
463, 45breqtrrd 4057 1  |-  ( ph  ->  F  ~~>  sum_ k  e.  Z  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   class class class wbr 4029    |-> cmpt 4090   dom cdm 4659    |` cres 4661   iotacio 5213   ` cfv 5254  (class class class)co 5918   CCcc 7870    + caddc 7875   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    seqcseq 10518    ~~> cli 11421   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator