Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isumclim3 | Unicode version |
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that must not occur in . (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumclim3.1 | |
isumclim3.2 | |
isumclim3.3 | |
isumclim3.4 | |
isumclim3.5 |
Ref | Expression |
---|---|
isumclim3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim3.3 | . . 3 | |
2 | climdm 11187 | . . 3 | |
3 | 1, 2 | sylib 121 | . 2 |
4 | isumclim3.1 | . . . 4 | |
5 | isumclim3.2 | . . . 4 | |
6 | eqidd 2158 | . . . 4 | |
7 | isumclim3.4 | . . . . . 6 | |
8 | 7 | fmpttd 5621 | . . . . 5 |
9 | 8 | ffvelrnda 5601 | . . . 4 |
10 | 4, 5, 6, 9 | isum 11277 | . . 3 |
11 | 7 | ralrimiva 2530 | . . . 4 |
12 | sumfct 11266 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | seqex 10341 | . . . . . . 7 | |
15 | 14 | a1i 9 | . . . . . 6 |
16 | isumclim3.5 | . . . . . . 7 | |
17 | simpl 108 | . . . . . . . 8 | |
18 | fzssuz 9962 | . . . . . . . . . . . . . 14 | |
19 | 18, 4 | sseqtrri 3163 | . . . . . . . . . . . . 13 |
20 | resmpt 4913 | . . . . . . . . . . . . 13 | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 |
22 | 21 | fveq1i 5468 | . . . . . . . . . . 11 |
23 | fvres 5491 | . . . . . . . . . . 11 | |
24 | 22, 23 | syl5reqr 2205 | . . . . . . . . . 10 |
25 | 24 | sumeq2i 11256 | . . . . . . . . 9 |
26 | ssralv 3192 | . . . . . . . . . . 11 | |
27 | 19, 11, 26 | mpsyl 65 | . . . . . . . . . 10 |
28 | sumfct 11266 | . . . . . . . . . 10 | |
29 | 27, 28 | syl 14 | . . . . . . . . 9 |
30 | 25, 29 | syl5eq 2202 | . . . . . . . 8 |
31 | 17, 30 | syl 14 | . . . . . . 7 |
32 | eqidd 2158 | . . . . . . . 8 | |
33 | simpr 109 | . . . . . . . . 9 | |
34 | 33, 4 | eleqtrdi 2250 | . . . . . . . 8 |
35 | 4 | eleq2i 2224 | . . . . . . . . . 10 |
36 | 35 | biimpri 132 | . . . . . . . . 9 |
37 | 17, 36, 9 | syl2an 287 | . . . . . . . 8 |
38 | 32, 34, 37 | fsum3ser 11289 | . . . . . . 7 |
39 | 16, 31, 38 | 3eqtr2rd 2197 | . . . . . 6 |
40 | 4, 15, 1, 5, 39 | climeq 11191 | . . . . 5 |
41 | 40 | iotabidv 5155 | . . . 4 |
42 | df-fv 5177 | . . . 4 | |
43 | df-fv 5177 | . . . 4 | |
44 | 41, 42, 43 | 3eqtr4g 2215 | . . 3 |
45 | 10, 13, 44 | 3eqtr3d 2198 | . 2 |
46 | 3, 45 | breqtrrd 3992 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 cvv 2712 wss 3102 class class class wbr 3965 cmpt 4025 cdm 4585 cres 4587 cio 5132 cfv 5169 (class class class)co 5821 cc 7725 caddc 7730 cz 9162 cuz 9434 cfz 9907 cseq 10339 cli 11170 csu 11245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-mulrcl 7826 ax-addcom 7827 ax-mulcom 7828 ax-addass 7829 ax-mulass 7830 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-1rid 7834 ax-0id 7835 ax-rnegex 7836 ax-precex 7837 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-apti 7842 ax-pre-ltadd 7843 ax-pre-mulgt0 7844 ax-pre-mulext 7845 ax-arch 7846 ax-caucvg 7847 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-frec 6335 df-1o 6360 df-oadd 6364 df-er 6477 df-en 6683 df-dom 6684 df-fin 6685 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-reap 8445 df-ap 8452 df-div 8541 df-inn 8829 df-2 8887 df-3 8888 df-4 8889 df-n0 9086 df-z 9163 df-uz 9435 df-q 9524 df-rp 9556 df-fz 9908 df-fzo 10037 df-seqfrec 10340 df-exp 10414 df-ihash 10645 df-cj 10737 df-re 10738 df-im 10739 df-rsqrt 10893 df-abs 10894 df-clim 11171 df-sumdc 11246 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |