ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumclim3 Unicode version

Theorem isumclim3 11431
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that  j must not occur in  A. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1  |-  Z  =  ( ZZ>= `  M )
isumclim3.2  |-  ( ph  ->  M  e.  ZZ )
isumclim3.3  |-  ( ph  ->  F  e.  dom  ~~>  )
isumclim3.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
isumclim3.5  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  sum_ k  e.  ( M ... j ) A )
Assertion
Ref Expression
isumclim3  |-  ( ph  ->  F  ~~>  sum_ k  e.  Z  A )
Distinct variable groups:    A, j    j,
k, M    ph, j, k   
j, Z, k    j, F
Allowed substitution hints:    A( k)    F( k)

Proof of Theorem isumclim3
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3  |-  ( ph  ->  F  e.  dom  ~~>  )
2 climdm 11303 . . 3  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
31, 2sylib 122 . 2  |-  ( ph  ->  F  ~~>  (  ~~>  `  F
) )
4 isumclim3.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
5 isumclim3.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
6 eqidd 2178 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  Z  |->  A ) `  m ) )
7 isumclim3.4 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
87fmpttd 5672 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  A ) : Z --> CC )
98ffvelcdmda 5652 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (
( k  e.  Z  |->  A ) `  m
)  e.  CC )
104, 5, 6, 9isum 11393 . . 3  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  A ) `  m )  =  (  ~~>  `
 seq M (  +  ,  ( k  e.  Z  |->  A ) ) ) )
117ralrimiva 2550 . . . 4  |-  ( ph  ->  A. k  e.  Z  A  e.  CC )
12 sumfct 11382 . . . 4  |-  ( A. k  e.  Z  A  e.  CC  ->  sum_ m  e.  Z  ( ( k  e.  Z  |->  A ) `
 m )  = 
sum_ k  e.  Z  A )
1311, 12syl 14 . . 3  |-  ( ph  -> 
sum_ m  e.  Z  ( ( k  e.  Z  |->  A ) `  m )  =  sum_ k  e.  Z  A
)
14 seqex 10447 . . . . . . 7  |-  seq M
(  +  ,  ( k  e.  Z  |->  A ) )  e.  _V
1514a1i 9 . . . . . 6  |-  ( ph  ->  seq M (  +  ,  ( k  e.  Z  |->  A ) )  e.  _V )
16 isumclim3.5 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  sum_ k  e.  ( M ... j ) A )
17 simpl 109 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  ph )
18 fvres 5540 . . . . . . . . . . 11  |-  ( m  e.  ( M ... j )  ->  (
( ( k  e.  Z  |->  A )  |`  ( M ... j ) ) `  m )  =  ( ( k  e.  Z  |->  A ) `
 m ) )
19 fzssuz 10065 . . . . . . . . . . . . . 14  |-  ( M ... j )  C_  ( ZZ>= `  M )
2019, 4sseqtrri 3191 . . . . . . . . . . . . 13  |-  ( M ... j )  C_  Z
21 resmpt 4956 . . . . . . . . . . . . 13  |-  ( ( M ... j ) 
C_  Z  ->  (
( k  e.  Z  |->  A )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j
)  |->  A ) )
2220, 21ax-mp 5 . . . . . . . . . . . 12  |-  ( ( k  e.  Z  |->  A )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j ) 
|->  A )
2322fveq1i 5517 . . . . . . . . . . 11  |-  ( ( ( k  e.  Z  |->  A )  |`  ( M ... j ) ) `
 m )  =  ( ( k  e.  ( M ... j
)  |->  A ) `  m )
2418, 23eqtr3di 2225 . . . . . . . . . 10  |-  ( m  e.  ( M ... j )  ->  (
( k  e.  Z  |->  A ) `  m
)  =  ( ( k  e.  ( M ... j )  |->  A ) `  m ) )
2524sumeq2i 11372 . . . . . . . . 9  |-  sum_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  = 
sum_ m  e.  ( M ... j ) ( ( k  e.  ( M ... j ) 
|->  A ) `  m
)
26 ssralv 3220 . . . . . . . . . . 11  |-  ( ( M ... j ) 
C_  Z  ->  ( A. k  e.  Z  A  e.  CC  ->  A. k  e.  ( M ... j ) A  e.  CC ) )
2720, 11, 26mpsyl 65 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  ( M ... j ) A  e.  CC )
28 sumfct 11382 . . . . . . . . . 10  |-  ( A. k  e.  ( M ... j ) A  e.  CC  ->  sum_ m  e.  ( M ... j
) ( ( k  e.  ( M ... j )  |->  A ) `
 m )  = 
sum_ k  e.  ( M ... j ) A )
2927, 28syl 14 . . . . . . . . 9  |-  ( ph  -> 
sum_ m  e.  ( M ... j ) ( ( k  e.  ( M ... j ) 
|->  A ) `  m
)  =  sum_ k  e.  ( M ... j
) A )
3025, 29eqtrid 2222 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  ( M ... j ) ( ( k  e.  Z  |->  A ) `  m
)  =  sum_ k  e.  ( M ... j
) A )
3117, 30syl 14 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  sum_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  = 
sum_ k  e.  ( M ... j ) A )
32 eqidd 2178 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  A ) `  m )  =  ( ( k  e.  Z  |->  A ) `
 m ) )
33 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
3433, 4eleqtrdi 2270 . . . . . . . 8  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
354eleq2i 2244 . . . . . . . . . 10  |-  ( m  e.  Z  <->  m  e.  ( ZZ>= `  M )
)
3635biimpri 133 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  M
)  ->  m  e.  Z )
3717, 36, 9syl2an 289 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  Z  |->  A ) `  m )  e.  CC )
3832, 34, 37fsum3ser 11405 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  sum_ m  e.  ( M ... j
) ( ( k  e.  Z  |->  A ) `
 m )  =  (  seq M (  +  ,  ( k  e.  Z  |->  A ) ) `  j ) )
3916, 31, 383eqtr2rd 2217 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  , 
( k  e.  Z  |->  A ) ) `  j )  =  ( F `  j ) )
404, 15, 1, 5, 39climeq 11307 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  ( k  e.  Z  |->  A ) )  ~~>  x  <->  F  ~~>  x ) )
4140iotabidv 5200 . . . 4  |-  ( ph  ->  ( iota x  seq M (  +  , 
( k  e.  Z  |->  A ) )  ~~>  x )  =  ( iota x F 
~~>  x ) )
42 df-fv 5225 . . . 4  |-  (  ~~>  `  seq M (  +  , 
( k  e.  Z  |->  A ) ) )  =  ( iota x  seq M (  +  , 
( k  e.  Z  |->  A ) )  ~~>  x )
43 df-fv 5225 . . . 4  |-  (  ~~>  `  F
)  =  ( iota
x F  ~~>  x )
4441, 42, 433eqtr4g 2235 . . 3  |-  ( ph  ->  (  ~~>  `  seq M (  +  ,  ( k  e.  Z  |->  A ) ) )  =  (  ~~>  `
 F ) )
4510, 13, 443eqtr3d 2218 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  (  ~~>  `  F
) )
463, 45breqtrrd 4032 1  |-  ( ph  ->  F  ~~>  sum_ k  e.  Z  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2738    C_ wss 3130   class class class wbr 4004    |-> cmpt 4065   dom cdm 4627    |` cres 4629   iotacio 5177   ` cfv 5217  (class class class)co 5875   CCcc 7809    + caddc 7814   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008    seqcseq 10445    ~~> cli 11286   sum_csu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator