ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coskpi Unicode version

Theorem coskpi 13409
Description: The absolute value of the cosine of an integer multiple of  pi is 1. (Contributed by NM, 19-Aug-2008.)
Assertion
Ref Expression
coskpi  |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  1 )

Proof of Theorem coskpi
StepHypRef Expression
1 zcn 9196 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 2cn 8928 . . . . . . . . . . 11  |-  2  e.  CC
3 picn 13348 . . . . . . . . . . 11  |-  pi  e.  CC
4 mul12 8027 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  ( K  x.  ( 2  x.  pi ) )  =  ( 2  x.  ( K  x.  pi ) ) )
52, 3, 4mp3an23 1319 . . . . . . . . . 10  |-  ( K  e.  CC  ->  ( K  x.  ( 2  x.  pi ) )  =  ( 2  x.  ( K  x.  pi ) ) )
61, 5syl 14 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( K  x.  ( 2  x.  pi ) )  =  ( 2  x.  ( K  x.  pi ) ) )
76fveq2d 5490 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  ( cos `  (
2  x.  ( K  x.  pi ) ) ) )
8 cos2kpi 13373 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  1 )
9 zre 9195 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  RR )
10 pire 13347 . . . . . . . . . . 11  |-  pi  e.  RR
11 remulcl 7881 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  pi  e.  RR )  -> 
( K  x.  pi )  e.  RR )
129, 10, 11sylancl 410 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  pi )  e.  RR )
1312recnd 7927 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  ( K  x.  pi )  e.  CC )
14 cos2t 11691 . . . . . . . . 9  |-  ( ( K  x.  pi )  e.  CC  ->  ( cos `  ( 2  x.  ( K  x.  pi ) ) )  =  ( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 ) )
1513, 14syl 14 . . . . . . . 8  |-  ( K  e.  ZZ  ->  ( cos `  ( 2  x.  ( K  x.  pi ) ) )  =  ( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 ) )
167, 8, 153eqtr3rd 2207 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1 )
1712recoscld 11665 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  pi ) )  e.  RR )
1817recnd 7927 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  pi ) )  e.  CC )
1918sqcld 10586 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC )
20 mulcl 7880 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( ( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC )  -> 
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  e.  CC )
212, 19, 20sylancr 411 . . . . . . . 8  |-  ( K  e.  ZZ  ->  (
2  x.  ( ( cos `  ( K  x.  pi ) ) ^ 2 ) )  e.  CC )
22 ax-1cn 7846 . . . . . . . . 9  |-  1  e.  CC
23 subadd 8101 . . . . . . . . 9  |-  ( ( ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) ) ) )
2422, 22, 23mp3an23 1319 . . . . . . . 8  |-  ( ( 2  x.  ( ( cos `  ( K  x.  pi ) ) ^ 2 ) )  e.  CC  ->  (
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) ) ) )
2521, 24syl 14 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) ) ) )
2616, 25mpbid 146 . . . . . 6  |-  ( K  e.  ZZ  ->  (
1  +  1 )  =  ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) ) )
27 2t1e2 9010 . . . . . . 7  |-  ( 2  x.  1 )  =  2
28 df-2 8916 . . . . . . 7  |-  2  =  ( 1  +  1 )
2927, 28eqtr2i 2187 . . . . . 6  |-  ( 1  +  1 )  =  ( 2  x.  1 )
3026, 29eqtr3di 2214 . . . . 5  |-  ( K  e.  ZZ  ->  (
2  x.  ( ( cos `  ( K  x.  pi ) ) ^ 2 ) )  =  ( 2  x.  1 ) )
31 2ap0 8950 . . . . . . . 8  |-  2 #  0
322, 31pm3.2i 270 . . . . . . 7  |-  ( 2  e.  CC  /\  2 #  0 )
33 mulcanap 8562 . . . . . . 7  |-  ( ( ( ( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC  /\  1  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  -> 
( ( 2  x.  ( ( cos `  ( K  x.  pi )
) ^ 2 ) )  =  ( 2  x.  1 )  <->  ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  1 ) )
3422, 32, 33mp3an23 1319 . . . . . 6  |-  ( ( ( cos `  ( K  x.  pi )
) ^ 2 )  e.  CC  ->  (
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  =  ( 2  x.  1 )  <->  ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  1 ) )
3519, 34syl 14 . . . . 5  |-  ( K  e.  ZZ  ->  (
( 2  x.  (
( cos `  ( K  x.  pi )
) ^ 2 ) )  =  ( 2  x.  1 )  <->  ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  1 ) )
3630, 35mpbid 146 . . . 4  |-  ( K  e.  ZZ  ->  (
( cos `  ( K  x.  pi )
) ^ 2 )  =  1 )
37 sq1 10548 . . . 4  |-  ( 1 ^ 2 )  =  1
3836, 37eqtr4di 2217 . . 3  |-  ( K  e.  ZZ  ->  (
( cos `  ( K  x.  pi )
) ^ 2 )  =  ( 1 ^ 2 ) )
39 1re 7898 . . . 4  |-  1  e.  RR
40 sqabs 11024 . . . 4  |-  ( ( ( cos `  ( K  x.  pi )
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( cos `  ( K  x.  pi ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  ( abs `  1 ) ) )
4117, 39, 40sylancl 410 . . 3  |-  ( K  e.  ZZ  ->  (
( ( cos `  ( K  x.  pi )
) ^ 2 )  =  ( 1 ^ 2 )  <->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  ( abs `  1 ) ) )
4238, 41mpbid 146 . 2  |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  ( abs `  1 ) )
43 abs1 11014 . 2  |-  ( abs `  1 )  =  1
4442, 43eqtrdi 2215 1  |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi )
) )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069   # cap 8479   2c2 8908   ZZcz 9191   ^cexp 10454   abscabs 10939   cosccos 11586   picpi 11588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator