ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2d Unicode version

Theorem times2d 9100
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
times2d  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 times2 8986 . 2  |-  ( A  e.  CC  ->  ( A  x.  2 )  =  ( A  +  A ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    + caddc 7756    x. cmul 7758   2c2 8908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulcom 7854  ax-mulass 7856  ax-distr 7857  ax-1rid 7860  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-2 8916
This theorem is referenced by:  div4p1lem1div2  9110
  Copyright terms: Public domain W3C validator