ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2d Unicode version

Theorem times2d 9229
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
times2d  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 times2 9113 . 2  |-  ( A  e.  CC  ->  ( A  x.  2 )  =  ( A  +  A ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872    + caddc 7877    x. cmul 7879   2c2 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulcom 7975  ax-mulass 7977  ax-distr 7978  ax-1rid 7981  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-2 9043
This theorem is referenced by:  div4p1lem1div2  9239
  Copyright terms: Public domain W3C validator