ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  times2d GIF version

Theorem times2d 9323
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
times2d (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 times2 9207 . 2 (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴))
31, 2syl 14 1 (𝜑 → (𝐴 · 2) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  (class class class)co 5974  cc 7965   + caddc 7970   · cmul 7972  2c2 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulcom 8068  ax-mulass 8070  ax-distr 8071  ax-1rid 8074  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-iota 5254  df-fv 5302  df-ov 5977  df-2 9137
This theorem is referenced by:  div4p1lem1div2  9333
  Copyright terms: Public domain W3C validator