Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2timesd | Unicode version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 |
Ref | Expression |
---|---|
2timesd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 | |
2 | 2times 8995 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5851 cc 7761 caddc 7766 cmul 7768 c2 8918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7855 ax-1cn 7856 ax-icn 7858 ax-addcl 7859 ax-mulcl 7861 ax-mulcom 7864 ax-mulass 7866 ax-distr 7867 ax-1rid 7870 ax-cnre 7874 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5854 df-2 8926 |
This theorem is referenced by: xleaddadd 9833 fzctr 10078 flhalf 10247 q2submod 10330 modaddmodup 10332 m1expeven 10512 binom2 10576 nn0opthlem2d 10644 crre 10810 imval2 10847 resqrexlemdec 10964 amgm2 11071 maxabsle 11157 maxabslemab 11159 maxltsup 11171 max0addsup 11172 arisum2 11451 efival 11684 sinadd 11688 cosadd 11689 addsin 11694 subsin 11695 cosmul 11697 addcos 11698 subcos 11699 sin2t 11701 cos2t 11702 eirraplem 11728 pythagtriplem12 12218 pythagtriplem15 12221 pythagtriplem17 12223 difsqpwdvds 12280 bl2in 13158 cosordlem 13525 apdifflemf 14040 apdifflemr 14041 |
Copyright terms: Public domain | W3C validator |