![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2timesd | Unicode version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2timesd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 2times 9112 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-mulcom 7975 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-2 9043 |
This theorem is referenced by: xleaddadd 9956 fzctr 10202 flhalf 10374 q2submod 10459 modaddmodup 10461 m1expeven 10660 binom2 10725 nn0opthlem2d 10795 crre 11004 imval2 11041 resqrexlemdec 11158 amgm2 11265 maxabsle 11351 maxabslemab 11353 maxltsup 11365 max0addsup 11366 arisum2 11645 efival 11878 sinadd 11882 cosadd 11883 addsin 11888 subsin 11889 cosmul 11891 addcos 11892 subcos 11893 sin2t 11895 cos2t 11896 eirraplem 11923 pythagtriplem12 12416 pythagtriplem15 12419 pythagtriplem17 12421 difsqpwdvds 12479 4sqlem11 12542 4sqlem12 12543 bl2in 14582 cosordlem 15025 gausslemma2d 15226 lgsquadlem1 15234 apdifflemf 15606 apdifflemr 15607 |
Copyright terms: Public domain | W3C validator |