Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2timesd | Unicode version |
Description: Two times a number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 |
Ref | Expression |
---|---|
2timesd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 | |
2 | 2times 9006 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmul 7779 c2 8929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-mulcom 7875 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-2 8937 |
This theorem is referenced by: xleaddadd 9844 fzctr 10089 flhalf 10258 q2submod 10341 modaddmodup 10343 m1expeven 10523 binom2 10587 nn0opthlem2d 10655 crre 10821 imval2 10858 resqrexlemdec 10975 amgm2 11082 maxabsle 11168 maxabslemab 11170 maxltsup 11182 max0addsup 11183 arisum2 11462 efival 11695 sinadd 11699 cosadd 11700 addsin 11705 subsin 11706 cosmul 11708 addcos 11709 subcos 11710 sin2t 11712 cos2t 11713 eirraplem 11739 pythagtriplem12 12229 pythagtriplem15 12232 pythagtriplem17 12234 difsqpwdvds 12291 bl2in 13197 cosordlem 13564 apdifflemf 14078 apdifflemr 14079 |
Copyright terms: Public domain | W3C validator |