ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasbas Unicode version

Theorem imasbas 13340
Description: The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
Assertion
Ref Expression
imasbas  |-  ( ph  ->  B  =  ( Base `  U ) )

Proof of Theorem imasbas
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2229 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2229 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2229 . . . 4  |-  ( .s
`  R )  =  ( .s `  R
)
6 eqidd 2230 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
7 eqidd 2230 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } )
8 imasbas.f . . . 4  |-  ( ph  ->  F : V -onto-> B
)
9 imasbas.r . . . 4  |-  ( ph  ->  R  e.  Z )
101, 2, 3, 4, 5, 6, 7, 8, 9imasival 13339 . . 3  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } )
1110fveq1d 5629 . 2  |-  ( ph  ->  ( U `  ( Base `  ndx ) )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } `
 ( Base `  ndx ) ) )
12 basendxnn 13088 . . . . . 6  |-  ( Base `  ndx )  e.  NN
13 basfn 13091 . . . . . . . . 9  |-  Base  Fn  _V
149elexd 2813 . . . . . . . . 9  |-  ( ph  ->  R  e.  _V )
15 funfvex 5644 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1615funfni 5423 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1713, 14, 16sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  e.  _V )
182, 17eqeltrd 2306 . . . . . . 7  |-  ( ph  ->  V  e.  _V )
19 focdmex 6260 . . . . . . 7  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
2018, 8, 19sylc 62 . . . . . 6  |-  ( ph  ->  B  e.  _V )
21 opexg 4314 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
2212, 20, 21sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
23 plusgndxnn 13144 . . . . . 6  |-  ( +g  ` 
ndx )  e.  NN
24 fof 5548 . . . . . . . . . . . . . . . 16  |-  ( F : V -onto-> B  ->  F : V --> B )
258, 24syl 14 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : V --> B )
2625, 18fexd 5869 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  _V )
27 vex 2802 . . . . . . . . . . . . . 14  |-  p  e. 
_V
28 fvexg 5646 . . . . . . . . . . . . . 14  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
2926, 27, 28sylancl 413 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  p
)  e.  _V )
30 vex 2802 . . . . . . . . . . . . . 14  |-  q  e. 
_V
31 fvexg 5646 . . . . . . . . . . . . . 14  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
3226, 30, 31sylancl 413 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  q
)  e.  _V )
33 opexg 4314 . . . . . . . . . . . . 13  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3429, 32, 33syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3527a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  p  e.  _V )
36 plusgslid 13145 . . . . . . . . . . . . . . . 16  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3736slotex 13059 . . . . . . . . . . . . . . 15  |-  ( R  e.  Z  ->  ( +g  `  R )  e. 
_V )
389, 37syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( +g  `  R
)  e.  _V )
3930a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  q  e.  _V )
40 ovexg 6035 . . . . . . . . . . . . . 14  |-  ( ( p  e.  _V  /\  ( +g  `  R )  e.  _V  /\  q  e.  _V )  ->  (
p ( +g  `  R
) q )  e. 
_V )
4135, 38, 39, 40syl3anc 1271 . . . . . . . . . . . . 13  |-  ( ph  ->  ( p ( +g  `  R ) q )  e.  _V )
42 fvexg 5646 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  ( p ( +g  `  R ) q )  e.  _V )  -> 
( F `  (
p ( +g  `  R
) q ) )  e.  _V )
4326, 41, 42syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  (
p ( +g  `  R
) q ) )  e.  _V )
44 opexg 4314 . . . . . . . . . . . 12  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p ( +g  `  R ) q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>.  e.  _V )
4534, 43, 44syl2anc 411 . . . . . . . . . . 11  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >.  e.  _V )
46 snexg 4268 . . . . . . . . . . 11  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( +g  `  R ) q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4745, 46syl 14 . . . . . . . . . 10  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
4847ralrimivw 2604 . . . . . . . . 9  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
49 iunexg 6264 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
5018, 48, 49syl2anc 411 . . . . . . . 8  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
5150ralrimivw 2604 . . . . . . 7  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
52 iunexg 6264 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
5318, 51, 52syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  e.  _V )
54 opexg 4314 . . . . . 6  |-  ( ( ( +g  `  ndx )  e.  NN  /\  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. }  e.  _V )  -> 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V )
5523, 53, 54sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V )
56 mulrslid 13165 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
5756simpri 113 . . . . . 6  |-  ( .r
`  ndx )  e.  NN
5856slotex 13059 . . . . . . . . . . . . . . 15  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
599, 58syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( .r `  R
)  e.  _V )
60 ovexg 6035 . . . . . . . . . . . . . 14  |-  ( ( p  e.  _V  /\  ( .r `  R )  e.  _V  /\  q  e.  _V )  ->  (
p ( .r `  R ) q )  e.  _V )
6135, 59, 39, 60syl3anc 1271 . . . . . . . . . . . . 13  |-  ( ph  ->  ( p ( .r
`  R ) q )  e.  _V )
62 fvexg 5646 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  ( p ( .r
`  R ) q )  e.  _V )  ->  ( F `  (
p ( .r `  R ) q ) )  e.  _V )
6326, 61, 62syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  (
p ( .r `  R ) q ) )  e.  _V )
64 opexg 4314 . . . . . . . . . . . 12  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p ( .r `  R ) q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>.  e.  _V )
6534, 63, 64syl2anc 411 . . . . . . . . . . 11  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >.  e.  _V )
66 snexg 4268 . . . . . . . . . . 11  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p ( .r
`  R ) q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
6765, 66syl 14 . . . . . . . . . 10  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
6867ralrimivw 2604 . . . . . . . . 9  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
69 iunexg 6264 . . . . . . . . 9  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )
7018, 68, 69syl2anc 411 . . . . . . . 8  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
7170ralrimivw 2604 . . . . . . 7  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
72 iunexg 6264 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )
7318, 71, 72syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. }  e.  _V )
74 opexg 4314 . . . . . 6  |-  ( ( ( .r `  ndx )  e.  NN  /\  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. }  e.  _V )  -> 
<. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )
7557, 73, 74sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )
76 tpexg 4535 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >.  e.  _V  /\ 
<. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( .r `  R
) q ) )
>. } >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
7722, 55, 75, 76syl3anc 1271 . . . 4  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } >. ,  <. ( .r `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. }  e.  _V )
7810, 77eqeltrd 2306 . . 3  |-  ( ph  ->  U  e.  _V )
79 baseid 13086 . . 3  |-  Base  = Slot  ( Base `  ndx )
8078, 79, 12strndxid 13060 . 2  |-  ( ph  ->  ( U `  ( Base `  ndx ) )  =  ( Base `  U
) )
8112a1i 9 . . 3  |-  ( ph  ->  ( Base `  ndx )  e.  NN )
82 basendxnplusgndx 13158 . . . 4  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
8382a1i 9 . . 3  |-  ( ph  ->  ( Base `  ndx )  =/=  ( +g  `  ndx ) )
84 basendxnmulrndx 13167 . . . 4  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
8584a1i 9 . . 3  |-  ( ph  ->  ( Base `  ndx )  =/=  ( .r `  ndx ) )
86 fvtp1g 5847 . . 3  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  /\  (
( Base `  ndx )  =/=  ( +g  `  ndx )  /\  ( Base `  ndx )  =/=  ( .r `  ndx ) ) )  -> 
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } `
 ( Base `  ndx ) )  =  B )
8781, 20, 83, 85, 86syl22anc 1272 . 2  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( .r
`  R ) q ) ) >. } >. } `
 ( Base `  ndx ) )  =  B )
8811, 80, 873eqtr3rd 2271 1  |-  ( ph  ->  B  =  ( Base `  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799   {csn 3666   {ctp 3668   <.cop 3669   U_ciun 3965    Fn wfn 5313   -->wf 5314   -onto->wfo 5316   ` cfv 5318  (class class class)co 6001   NNcn 9110   ndxcnx 13029  Slot cslot 13031   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   .scvsca 13114    "s cimas 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-iimas 13335
This theorem is referenced by:  qusbas  13360  imasmnd2  13485  imasgrp2  13647  imasabl  13873  imasrng  13919  imasring  14027
  Copyright terms: Public domain W3C validator