ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfun Unicode version

Theorem tposfun 6007
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun  |-  ( Fun 
F  ->  Fun tpos  F )

Proof of Theorem tposfun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funmpt 5038 . . 3  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2 funco 5040 . . 3  |-  ( ( Fun  F  /\  Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
31, 2mpan2 416 . 2  |-  ( Fun 
F  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
4 df-tpos 5992 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
54funeqi 5022 . 2  |-  ( Fun tpos  F 
<->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
63, 5sylibr 132 1  |-  ( Fun 
F  ->  Fun tpos  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 2995   (/)c0 3284   {csn 3441   U.cuni 3648    |-> cmpt 3891   `'ccnv 4427   dom cdm 4428    o. ccom 4432   Fun wfun 4996  tpos ctpos 5991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-fun 5004  df-tpos 5992
This theorem is referenced by:  tposfn2  6013
  Copyright terms: Public domain W3C validator