ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfun Unicode version

Theorem tposfun 6318
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun  |-  ( Fun 
F  ->  Fun tpos  F )

Proof of Theorem tposfun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funmpt 5296 . . 3  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2 funco 5298 . . 3  |-  ( ( Fun  F  /\  Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
31, 2mpan2 425 . 2  |-  ( Fun 
F  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
4 df-tpos 6303 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
54funeqi 5279 . 2  |-  ( Fun tpos  F 
<->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
63, 5sylibr 134 1  |-  ( Fun 
F  ->  Fun tpos  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 3155   (/)c0 3450   {csn 3622   U.cuni 3839    |-> cmpt 4094   `'ccnv 4662   dom cdm 4663    o. ccom 4667   Fun wfun 5252  tpos ctpos 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260  df-tpos 6303
This theorem is referenced by:  tposfn2  6324
  Copyright terms: Public domain W3C validator