ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg Unicode version

Theorem ovtposg 6262
Description: The transposition swaps the arguments in a two-argument function. When  F is a matrix, which is to say a function from ( 1 ... m )  X. ( 1 ... n ) to the reals or some ring, tpos  F is the transposition of  F, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )

Proof of Theorem ovtposg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . 5  |-  y  e. 
_V
2 brtposg 6257 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  y  e.  _V )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
31, 2mp3an3 1326 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
43iotabidv 5201 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( iota y <. A ,  B >.tpos  F y )  =  ( iota y <. B ,  A >. F y ) )
5 df-fv 5226 . . 3  |-  (tpos  F `  <. A ,  B >. )  =  ( iota y <. A ,  B >.tpos  F y )
6 df-fv 5226 . . 3  |-  ( F `
 <. B ,  A >. )  =  ( iota y <. B ,  A >. F y )
74, 5, 63eqtr4g 2235 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (tpos  F `  <. A ,  B >. )  =  ( F `  <. B ,  A >. ) )
8 df-ov 5880 . 2  |-  ( Atpos 
F B )  =  (tpos  F `  <. A ,  B >. )
9 df-ov 5880 . 2  |-  ( B F A )  =  ( F `  <. B ,  A >. )
107, 8, 93eqtr4g 2235 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597   class class class wbr 4005   iotacio 5178   ` cfv 5218  (class class class)co 5877  tpos ctpos 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-tpos 6248
This theorem is referenced by:  tpossym  6279  opprmulg  13248
  Copyright terms: Public domain W3C validator