ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg Unicode version

Theorem ovtposg 6312
Description: The transposition swaps the arguments in a two-argument function. When  F is a matrix, which is to say a function from ( 1 ... m )  X. ( 1 ... n ) to the reals or some ring, tpos  F is the transposition of  F, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )

Proof of Theorem ovtposg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  y  e. 
_V
2 brtposg 6307 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  y  e.  _V )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
31, 2mp3an3 1337 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
43iotabidv 5237 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( iota y <. A ,  B >.tpos  F y )  =  ( iota y <. B ,  A >. F y ) )
5 df-fv 5262 . . 3  |-  (tpos  F `  <. A ,  B >. )  =  ( iota y <. A ,  B >.tpos  F y )
6 df-fv 5262 . . 3  |-  ( F `
 <. B ,  A >. )  =  ( iota y <. B ,  A >. F y )
74, 5, 63eqtr4g 2251 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (tpos  F `  <. A ,  B >. )  =  ( F `  <. B ,  A >. ) )
8 df-ov 5921 . 2  |-  ( Atpos 
F B )  =  (tpos  F `  <. A ,  B >. )
9 df-ov 5921 . 2  |-  ( B F A )  =  ( F `  <. B ,  A >. )
107, 8, 93eqtr4g 2251 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621   class class class wbr 4029   iotacio 5213   ` cfv 5254  (class class class)co 5918  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-tpos 6298
This theorem is referenced by:  tpossym  6329  opprmulg  13567
  Copyright terms: Public domain W3C validator