ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovtposg Unicode version

Theorem ovtposg 6317
Description: The transposition swaps the arguments in a two-argument function. When  F is a matrix, which is to say a function from ( 1 ... m )  X. ( 1 ... n ) to the reals or some ring, tpos  F is the transposition of  F, which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
ovtposg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )

Proof of Theorem ovtposg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5  |-  y  e. 
_V
2 brtposg 6312 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  y  e.  _V )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
31, 2mp3an3 1337 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.tpos  F y  <->  <. B ,  A >. F y ) )
43iotabidv 5241 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( iota y <. A ,  B >.tpos  F y )  =  ( iota y <. B ,  A >. F y ) )
5 df-fv 5266 . . 3  |-  (tpos  F `  <. A ,  B >. )  =  ( iota y <. A ,  B >.tpos  F y )
6 df-fv 5266 . . 3  |-  ( F `
 <. B ,  A >. )  =  ( iota y <. B ,  A >. F y )
74, 5, 63eqtr4g 2254 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  (tpos  F `  <. A ,  B >. )  =  ( F `  <. B ,  A >. ) )
8 df-ov 5925 . 2  |-  ( Atpos 
F B )  =  (tpos  F `  <. A ,  B >. )
9 df-ov 5925 . 2  |-  ( B F A )  =  ( F `  <. B ,  A >. )
107, 8, 93eqtr4g 2254 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Atpos  F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3625   class class class wbr 4033   iotacio 5217   ` cfv 5258  (class class class)co 5922  tpos ctpos 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-tpos 6303
This theorem is referenced by:  tpossym  6334  opprmulg  13627
  Copyright terms: Public domain W3C validator