ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniixp Unicode version

Theorem uniixp 6789
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
uniixp  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem uniixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpf 6788 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f : A --> U_ x  e.  A  B
)
2 fssxp 5428 . . . . 5  |-  ( f : A --> U_ x  e.  A  B  ->  f 
C_  ( A  X.  U_ x  e.  A  B
) )
31, 2syl 14 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  f  C_  ( A  X.  U_ x  e.  A  B ) )
4 velpw 3613 . . . 4  |-  ( f  e.  ~P ( A  X.  U_ x  e.  A  B )  <->  f  C_  ( A  X.  U_ x  e.  A  B )
)
53, 4sylibr 134 . . 3  |-  ( f  e.  X_ x  e.  A  B  ->  f  e.  ~P ( A  X.  U_ x  e.  A  B )
)
65ssriv 3188 . 2  |-  X_ x  e.  A  B  C_  ~P ( A  X.  U_ x  e.  A  B )
7 sspwuni 4002 . 2  |-  ( X_ x  e.  A  B  C_ 
~P ( A  X.  U_ x  e.  A  B
)  <->  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B
) )
86, 7mpbi 145 1  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    C_ wss 3157   ~Pcpw 3606   U.cuni 3840   U_ciun 3917    X. cxp 4662   -->wf 5255   X_cixp 6766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ixp 6767
This theorem is referenced by:  ixpexgg  6790
  Copyright terms: Public domain W3C validator