ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniixp Unicode version

Theorem uniixp 6699
Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
uniixp  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem uniixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpf 6698 . . . . 5  |-  ( f  e.  X_ x  e.  A  B  ->  f : A --> U_ x  e.  A  B
)
2 fssxp 5365 . . . . 5  |-  ( f : A --> U_ x  e.  A  B  ->  f 
C_  ( A  X.  U_ x  e.  A  B
) )
31, 2syl 14 . . . 4  |-  ( f  e.  X_ x  e.  A  B  ->  f  C_  ( A  X.  U_ x  e.  A  B ) )
4 velpw 3573 . . . 4  |-  ( f  e.  ~P ( A  X.  U_ x  e.  A  B )  <->  f  C_  ( A  X.  U_ x  e.  A  B )
)
53, 4sylibr 133 . . 3  |-  ( f  e.  X_ x  e.  A  B  ->  f  e.  ~P ( A  X.  U_ x  e.  A  B )
)
65ssriv 3151 . 2  |-  X_ x  e.  A  B  C_  ~P ( A  X.  U_ x  e.  A  B )
7 sspwuni 3957 . 2  |-  ( X_ x  e.  A  B  C_ 
~P ( A  X.  U_ x  e.  A  B
)  <->  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B
) )
86, 7mpbi 144 1  |-  U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    e. wcel 2141    C_ wss 3121   ~Pcpw 3566   U.cuni 3796   U_ciun 3873    X. cxp 4609   -->wf 5194   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ixp 6677
This theorem is referenced by:  ixpexgg  6700
  Copyright terms: Public domain W3C validator