| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0nemnf | GIF version | ||
| Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0nemnf | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9359 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 9303 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | renemnfd 8123 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ -∞) |
| 4 | pnfnemnf 8126 | . . . 4 ⊢ +∞ ≠ -∞ | |
| 5 | neeq1 2388 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
| 7 | 3, 6 | jaoi 717 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 +∞cpnf 8103 -∞cmnf 8104 ℕ0cn0 9294 ℕ0*cxnn0 9357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-pnf 8108 df-mnf 8109 df-xr 8110 df-inn 9036 df-n0 9295 df-xnn0 9358 |
| This theorem is referenced by: xnn0xrnemnf 9369 |
| Copyright terms: Public domain | W3C validator |