ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nemnf GIF version

Theorem xnn0nemnf 9399
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nemnf (𝐴 ∈ ℕ0*𝐴 ≠ -∞)

Proof of Theorem xnn0nemnf
StepHypRef Expression
1 elxnn0 9390 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 9334 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32renemnfd 8154 . . 3 (𝐴 ∈ ℕ0𝐴 ≠ -∞)
4 pnfnemnf 8157 . . . 4 +∞ ≠ -∞
5 neeq1 2390 . . . 4 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
64, 5mpbiri 168 . . 3 (𝐴 = +∞ → 𝐴 ≠ -∞)
73, 6jaoi 718 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ≠ -∞)
81, 7sylbi 121 1 (𝐴 ∈ ℕ0*𝐴 ≠ -∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  wne 2377  +∞cpnf 8134  -∞cmnf 8135  0cn0 9325  0*cxnn0 9388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052  ax-rnegex 8064
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-int 3895  df-pnf 8139  df-mnf 8140  df-xr 8141  df-inn 9067  df-n0 9326  df-xnn0 9389
This theorem is referenced by:  xnn0xrnemnf  9400
  Copyright terms: Public domain W3C validator