ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0nemnf GIF version

Theorem xnn0nemnf 9188
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nemnf (𝐴 ∈ ℕ0*𝐴 ≠ -∞)

Proof of Theorem xnn0nemnf
StepHypRef Expression
1 elxnn0 9179 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 9123 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32renemnfd 7950 . . 3 (𝐴 ∈ ℕ0𝐴 ≠ -∞)
4 pnfnemnf 7953 . . . 4 +∞ ≠ -∞
5 neeq1 2349 . . . 4 (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞))
64, 5mpbiri 167 . . 3 (𝐴 = +∞ → 𝐴 ≠ -∞)
73, 6jaoi 706 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ≠ -∞)
81, 7sylbi 120 1 (𝐴 ∈ ℕ0*𝐴 ≠ -∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wcel 2136  wne 2336  +∞cpnf 7930  -∞cmnf 7931  0cn0 9114  0*cxnn0 9177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-pnf 7935  df-mnf 7936  df-xr 7937  df-inn 8858  df-n0 9115  df-xnn0 9178
This theorem is referenced by:  xnn0xrnemnf  9189
  Copyright terms: Public domain W3C validator