![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xnn0nemnf | GIF version |
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0nemnf | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9244 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
2 | nn0re 9188 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | 2 | renemnfd 8012 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ -∞) |
4 | pnfnemnf 8015 | . . . 4 ⊢ +∞ ≠ -∞ | |
5 | neeq1 2360 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
7 | 3, 6 | jaoi 716 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
8 | 1, 7 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 +∞cpnf 7992 -∞cmnf 7993 ℕ0cn0 9179 ℕ0*cxnn0 9242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 ax-rnegex 7923 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-pnf 7997 df-mnf 7998 df-xr 7999 df-inn 8923 df-n0 9180 df-xnn0 9243 |
This theorem is referenced by: xnn0xrnemnf 9254 |
Copyright terms: Public domain | W3C validator |