| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnn0nemnf | GIF version | ||
| Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0nemnf | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 9430 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 9374 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | renemnfd 8194 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ -∞) |
| 4 | pnfnemnf 8197 | . . . 4 ⊢ +∞ ≠ -∞ | |
| 5 | neeq1 2413 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
| 7 | 3, 6 | jaoi 721 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
| 8 | 1, 7 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 +∞cpnf 8174 -∞cmnf 8175 ℕ0cn0 9365 ℕ0*cxnn0 9428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-pnf 8179 df-mnf 8180 df-xr 8181 df-inn 9107 df-n0 9366 df-xnn0 9429 |
| This theorem is referenced by: xnn0xrnemnf 9440 |
| Copyright terms: Public domain | W3C validator |