Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0nemnf | GIF version |
Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0nemnf | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9134 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
2 | nn0re 9078 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | 2 | renemnfd 7908 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ -∞) |
4 | pnfnemnf 7911 | . . . 4 ⊢ +∞ ≠ -∞ | |
5 | neeq1 2337 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
6 | 4, 5 | mpbiri 167 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
7 | 3, 6 | jaoi 706 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ≠ -∞) |
8 | 1, 7 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1332 ∈ wcel 2125 ≠ wne 2324 +∞cpnf 7888 -∞cmnf 7889 ℕ0cn0 9069 ℕ0*cxnn0 9132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1re 7805 ax-addrcl 7808 ax-rnegex 7820 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-uni 3769 df-int 3804 df-pnf 7893 df-mnf 7894 df-xr 7895 df-inn 8813 df-n0 9070 df-xnn0 9133 |
This theorem is referenced by: xnn0xrnemnf 9144 |
Copyright terms: Public domain | W3C validator |