ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpm Unicode version

Theorem rnxpm 5012
Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
rnxpm  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem rnxpm
StepHypRef Expression
1 df-rn 4594 . . 3  |-  ran  ( A  X.  B )  =  dom  `' ( A  X.  B )
2 cnvxp 5001 . . . 4  |-  `' ( A  X.  B )  =  ( B  X.  A )
32dmeqi 4784 . . 3  |-  dom  `' ( A  X.  B
)  =  dom  ( B  X.  A )
41, 3eqtri 2178 . 2  |-  ran  ( A  X.  B )  =  dom  ( B  X.  A )
5 dmxpm 4803 . 2  |-  ( E. x  x  e.  A  ->  dom  ( B  X.  A )  =  B )
64, 5syl5eq 2202 1  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   E.wex 1472    e. wcel 2128    X. cxp 4581   `'ccnv 4582   dom cdm 4583   ran crn 4584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4589  df-rel 4590  df-cnv 4591  df-dm 4593  df-rn 4594
This theorem is referenced by:  ssxpbm  5018  ssxp2  5020  xpexr2m  5024  xpima2m  5030  unixpm  5118  djuexb  6978  exmidfodomrlemim  7119
  Copyright terms: Public domain W3C validator