ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpm Unicode version

Theorem rnxpm 5131
Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
rnxpm  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem rnxpm
StepHypRef Expression
1 df-rn 4704 . . 3  |-  ran  ( A  X.  B )  =  dom  `' ( A  X.  B )
2 cnvxp 5120 . . . 4  |-  `' ( A  X.  B )  =  ( B  X.  A )
32dmeqi 4898 . . 3  |-  dom  `' ( A  X.  B
)  =  dom  ( B  X.  A )
41, 3eqtri 2228 . 2  |-  ran  ( A  X.  B )  =  dom  ( B  X.  A )
5 dmxpm 4917 . 2  |-  ( E. x  x  e.  A  ->  dom  ( B  X.  A )  =  B )
64, 5eqtrid 2252 1  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1516    e. wcel 2178    X. cxp 4691   `'ccnv 4692   dom cdm 4693   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  ssxpbm  5137  ssxp2  5139  xpexr2m  5143  xpima2m  5149  unixpm  5237  djuexb  7172  exmidfodomrlemim  7340  elply2  15322
  Copyright terms: Public domain W3C validator