Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnxpm | Unicode version |
Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.) |
Ref | Expression |
---|---|
rnxpm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4594 | . . 3 | |
2 | cnvxp 5001 | . . . 4 | |
3 | 2 | dmeqi 4784 | . . 3 |
4 | 1, 3 | eqtri 2178 | . 2 |
5 | dmxpm 4803 | . 2 | |
6 | 4, 5 | syl5eq 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wex 1472 wcel 2128 cxp 4581 ccnv 4582 cdm 4583 crn 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4589 df-rel 4590 df-cnv 4591 df-dm 4593 df-rn 4594 |
This theorem is referenced by: ssxpbm 5018 ssxp2 5020 xpexr2m 5024 xpima2m 5030 unixpm 5118 djuexb 6978 exmidfodomrlemim 7119 |
Copyright terms: Public domain | W3C validator |