ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpm Unicode version

Theorem rnxpm 5157
Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
rnxpm  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem rnxpm
StepHypRef Expression
1 df-rn 4729 . . 3  |-  ran  ( A  X.  B )  =  dom  `' ( A  X.  B )
2 cnvxp 5146 . . . 4  |-  `' ( A  X.  B )  =  ( B  X.  A )
32dmeqi 4923 . . 3  |-  dom  `' ( A  X.  B
)  =  dom  ( B  X.  A )
41, 3eqtri 2250 . 2  |-  ran  ( A  X.  B )  =  dom  ( B  X.  A )
5 dmxpm 4943 . 2  |-  ( E. x  x  e.  A  ->  dom  ( B  X.  A )  =  B )
64, 5eqtrid 2274 1  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   E.wex 1538    e. wcel 2200    X. cxp 4716   `'ccnv 4717   dom cdm 4718   ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  ssxpbm  5163  ssxp2  5165  xpexr2m  5169  xpima2m  5175  unixpm  5263  djuexb  7207  exmidfodomrlemim  7375  elply2  15403
  Copyright terms: Public domain W3C validator