ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpm Unicode version

Theorem rnxpm 5033
Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
rnxpm  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem rnxpm
StepHypRef Expression
1 df-rn 4615 . . 3  |-  ran  ( A  X.  B )  =  dom  `' ( A  X.  B )
2 cnvxp 5022 . . . 4  |-  `' ( A  X.  B )  =  ( B  X.  A )
32dmeqi 4805 . . 3  |-  dom  `' ( A  X.  B
)  =  dom  ( B  X.  A )
41, 3eqtri 2186 . 2  |-  ran  ( A  X.  B )  =  dom  ( B  X.  A )
5 dmxpm 4824 . 2  |-  ( E. x  x  e.  A  ->  dom  ( B  X.  A )  =  B )
64, 5syl5eq 2211 1  |-  ( E. x  x  e.  A  ->  ran  ( A  X.  B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136    X. cxp 4602   `'ccnv 4603   dom cdm 4604   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  ssxpbm  5039  ssxp2  5041  xpexr2m  5045  xpima2m  5051  unixpm  5139  djuexb  7009  exmidfodomrlemim  7157
  Copyright terms: Public domain W3C validator