Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ottposg | GIF version |
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
ottposg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtposg 6222 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈𝐵, 𝐴〉𝐹𝐶)) | |
2 | df-br 3983 | . . 3 ⊢ (〈𝐴, 𝐵〉tpos 𝐹𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹) | |
3 | df-br 3983 | . . 3 ⊢ (〈𝐵, 𝐴〉𝐹𝐶 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹) | |
4 | 1, 2, 3 | 3bitr3g 221 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹)) |
5 | df-ot 3586 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
6 | 5 | eleq1i 2232 | . 2 ⊢ (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ tpos 𝐹) |
7 | df-ot 3586 | . . 3 ⊢ 〈𝐵, 𝐴, 𝐶〉 = 〈〈𝐵, 𝐴〉, 𝐶〉 | |
8 | 7 | eleq1i 2232 | . 2 ⊢ (〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹 ↔ 〈〈𝐵, 𝐴〉, 𝐶〉 ∈ 𝐹) |
9 | 4, 6, 8 | 3bitr4g 222 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵, 𝐶〉 ∈ tpos 𝐹 ↔ 〈𝐵, 𝐴, 𝐶〉 ∈ 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 〈cop 3579 〈cotp 3580 class class class wbr 3982 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-ot 3586 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |