ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ottposg GIF version

Theorem ottposg 5950
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottposg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))

Proof of Theorem ottposg
StepHypRef Expression
1 brtposg 5949 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨𝐵, 𝐴𝐹𝐶))
2 df-br 3812 . . 3 (⟨𝐴, 𝐵⟩tpos 𝐹𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹)
3 df-br 3812 . . 3 (⟨𝐵, 𝐴𝐹𝐶 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)
41, 2, 33bitr3g 220 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹))
5 df-ot 3432 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
65eleq1i 2148 . 2 (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ tpos 𝐹)
7 df-ot 3432 . . 3 𝐵, 𝐴, 𝐶⟩ = ⟨⟨𝐵, 𝐴⟩, 𝐶
87eleq1i 2148 . 2 (⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹 ↔ ⟨⟨𝐵, 𝐴⟩, 𝐶⟩ ∈ 𝐹)
94, 6, 83bitr4g 221 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵, 𝐶⟩ ∈ tpos 𝐹 ↔ ⟨𝐵, 𝐴, 𝐶⟩ ∈ 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  w3a 920  wcel 1434  cop 3425  cotp 3426   class class class wbr 3811  tpos ctpos 5939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-ot 3432  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-fv 4975  df-tpos 5940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator