![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuf1olem | GIF version |
Description: Lemma for djulf1o 7117 and djurf1o 7118. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
djuf1olem.1 | ⊢ 𝑋 ∈ V |
djuf1olem.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djuf1olem | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuf1olem.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) | |
2 | djuf1olem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
3 | 2 | snid 3649 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
4 | opelxpi 4691 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) | |
5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
6 | 5 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
7 | xp2nd 6219 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (2nd ‘𝑦) ∈ 𝐴) | |
8 | 7 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd ‘𝑦) ∈ 𝐴) |
9 | 1st2nd2 6228 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
10 | xp1st 6218 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) ∈ {𝑋}) | |
11 | elsni 3636 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {𝑋} → (1st ‘𝑦) = 𝑋) | |
12 | 10, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) = 𝑋) |
13 | 12 | opeq1d 3810 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝑋, (2nd ‘𝑦)〉) |
14 | 9, 13 | eqtrd 2226 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈𝑋, (2nd ‘𝑦)〉) |
15 | 14 | eqeq2d 2205 | . . . . . 6 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (〈𝑋, 𝑥〉 = 𝑦 ↔ 〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉)) |
16 | eqcom 2195 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈𝑋, 𝑥〉) | |
17 | eqid 2193 | . . . . . . 7 ⊢ 𝑋 = 𝑋 | |
18 | vex 2763 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
19 | 2, 18 | opth 4266 | . . . . . . 7 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ (𝑋 = 𝑋 ∧ 𝑥 = (2nd ‘𝑦))) |
20 | 17, 19 | mpbiran 942 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
21 | 15, 16, 20 | 3bitr3g 222 | . . . . 5 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = 〈𝑋, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
22 | 21 | bicomd 141 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
23 | 22 | ad2antll 491 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
24 | 1, 6, 8, 23 | f1o2d 6123 | . 2 ⊢ (⊤ → 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴)) |
25 | 24 | mptru 1373 | 1 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 Vcvv 2760 {csn 3618 〈cop 3621 ↦ cmpt 4090 × cxp 4657 –1-1-onto→wf1o 5253 ‘cfv 5254 1st c1st 6191 2nd c2nd 6192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 |
This theorem is referenced by: djuf1olemr 7113 djulf1o 7117 djurf1o 7118 |
Copyright terms: Public domain | W3C validator |