ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem GIF version

Theorem djuf1olem 7112
Description: Lemma for djulf1o 7117 and djurf1o 7118. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1 𝑋 ∈ V
djuf1olem.2 𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olem 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3 𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
2 djuf1olem.1 . . . . . 6 𝑋 ∈ V
32snid 3649 . . . . 5 𝑋 ∈ {𝑋}
4 opelxpi 4691 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝑥𝐴) → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
53, 4mpan 424 . . . 4 (𝑥𝐴 → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
65adantl 277 . . 3 ((⊤ ∧ 𝑥𝐴) → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
7 xp2nd 6219 . . . 4 (𝑦 ∈ ({𝑋} × 𝐴) → (2nd𝑦) ∈ 𝐴)
87adantl 277 . . 3 ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd𝑦) ∈ 𝐴)
9 1st2nd2 6228 . . . . . . . 8 (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
10 xp1st 6218 . . . . . . . . . 10 (𝑦 ∈ ({𝑋} × 𝐴) → (1st𝑦) ∈ {𝑋})
11 elsni 3636 . . . . . . . . . 10 ((1st𝑦) ∈ {𝑋} → (1st𝑦) = 𝑋)
1210, 11syl 14 . . . . . . . . 9 (𝑦 ∈ ({𝑋} × 𝐴) → (1st𝑦) = 𝑋)
1312opeq1d 3810 . . . . . . . 8 (𝑦 ∈ ({𝑋} × 𝐴) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑋, (2nd𝑦)⟩)
149, 13eqtrd 2226 . . . . . . 7 (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = ⟨𝑋, (2nd𝑦)⟩)
1514eqeq2d 2205 . . . . . 6 (𝑦 ∈ ({𝑋} × 𝐴) → (⟨𝑋, 𝑥⟩ = 𝑦 ↔ ⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩))
16 eqcom 2195 . . . . . 6 (⟨𝑋, 𝑥⟩ = 𝑦𝑦 = ⟨𝑋, 𝑥⟩)
17 eqid 2193 . . . . . . 7 𝑋 = 𝑋
18 vex 2763 . . . . . . . 8 𝑥 ∈ V
192, 18opth 4266 . . . . . . 7 (⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩ ↔ (𝑋 = 𝑋𝑥 = (2nd𝑦)))
2017, 19mpbiran 942 . . . . . 6 (⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2115, 16, 203bitr3g 222 . . . . 5 (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = ⟨𝑋, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2221bicomd 141 . . . 4 (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨𝑋, 𝑥⟩))
2322ad2antll 491 . . 3 ((⊤ ∧ (𝑥𝐴𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨𝑋, 𝑥⟩))
241, 6, 8, 23f1o2d 6123 . 2 (⊤ → 𝐹:𝐴1-1-onto→({𝑋} × 𝐴))
2524mptru 1373 1 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wtru 1365  wcel 2164  Vcvv 2760  {csn 3618  cop 3621  cmpt 4090   × cxp 4657  1-1-ontowf1o 5253  cfv 5254  1st c1st 6191  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by:  djuf1olemr  7113  djulf1o  7117  djurf1o  7118
  Copyright terms: Public domain W3C validator