| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuf1olem | GIF version | ||
| Description: Lemma for djulf1o 7160 and djurf1o 7161. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuf1olem.1 | ⊢ 𝑋 ∈ V |
| djuf1olem.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
| Ref | Expression |
|---|---|
| djuf1olem | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuf1olem.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) | |
| 2 | djuf1olem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 3 | 2 | snid 3664 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
| 4 | opelxpi 4707 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
| 7 | xp2nd 6252 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (2nd ‘𝑦) ∈ 𝐴) | |
| 8 | 7 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd ‘𝑦) ∈ 𝐴) |
| 9 | 1st2nd2 6261 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
| 10 | xp1st 6251 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) ∈ {𝑋}) | |
| 11 | elsni 3651 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {𝑋} → (1st ‘𝑦) = 𝑋) | |
| 12 | 10, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) = 𝑋) |
| 13 | 12 | opeq1d 3825 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝑋, (2nd ‘𝑦)〉) |
| 14 | 9, 13 | eqtrd 2238 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈𝑋, (2nd ‘𝑦)〉) |
| 15 | 14 | eqeq2d 2217 | . . . . . 6 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (〈𝑋, 𝑥〉 = 𝑦 ↔ 〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉)) |
| 16 | eqcom 2207 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈𝑋, 𝑥〉) | |
| 17 | eqid 2205 | . . . . . . 7 ⊢ 𝑋 = 𝑋 | |
| 18 | vex 2775 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 19 | 2, 18 | opth 4281 | . . . . . . 7 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ (𝑋 = 𝑋 ∧ 𝑥 = (2nd ‘𝑦))) |
| 20 | 17, 19 | mpbiran 943 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
| 21 | 15, 16, 20 | 3bitr3g 222 | . . . . 5 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = 〈𝑋, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
| 22 | 21 | bicomd 141 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
| 23 | 22 | ad2antll 491 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
| 24 | 1, 6, 8, 23 | f1o2d 6151 | . 2 ⊢ (⊤ → 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴)) |
| 25 | 24 | mptru 1382 | 1 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ⊤wtru 1374 ∈ wcel 2176 Vcvv 2772 {csn 3633 〈cop 3636 ↦ cmpt 4105 × cxp 4673 –1-1-onto→wf1o 5270 ‘cfv 5271 1st c1st 6224 2nd c2nd 6225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: djuf1olemr 7156 djulf1o 7160 djurf1o 7161 |
| Copyright terms: Public domain | W3C validator |