ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem GIF version

Theorem djuf1olem 7220
Description: Lemma for djulf1o 7225 and djurf1o 7226. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1 𝑋 ∈ V
djuf1olem.2 𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olem 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3 𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
2 djuf1olem.1 . . . . . 6 𝑋 ∈ V
32snid 3697 . . . . 5 𝑋 ∈ {𝑋}
4 opelxpi 4751 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝑥𝐴) → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
53, 4mpan 424 . . . 4 (𝑥𝐴 → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
65adantl 277 . . 3 ((⊤ ∧ 𝑥𝐴) → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
7 xp2nd 6312 . . . 4 (𝑦 ∈ ({𝑋} × 𝐴) → (2nd𝑦) ∈ 𝐴)
87adantl 277 . . 3 ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd𝑦) ∈ 𝐴)
9 1st2nd2 6321 . . . . . . . 8 (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
10 xp1st 6311 . . . . . . . . . 10 (𝑦 ∈ ({𝑋} × 𝐴) → (1st𝑦) ∈ {𝑋})
11 elsni 3684 . . . . . . . . . 10 ((1st𝑦) ∈ {𝑋} → (1st𝑦) = 𝑋)
1210, 11syl 14 . . . . . . . . 9 (𝑦 ∈ ({𝑋} × 𝐴) → (1st𝑦) = 𝑋)
1312opeq1d 3863 . . . . . . . 8 (𝑦 ∈ ({𝑋} × 𝐴) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑋, (2nd𝑦)⟩)
149, 13eqtrd 2262 . . . . . . 7 (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = ⟨𝑋, (2nd𝑦)⟩)
1514eqeq2d 2241 . . . . . 6 (𝑦 ∈ ({𝑋} × 𝐴) → (⟨𝑋, 𝑥⟩ = 𝑦 ↔ ⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩))
16 eqcom 2231 . . . . . 6 (⟨𝑋, 𝑥⟩ = 𝑦𝑦 = ⟨𝑋, 𝑥⟩)
17 eqid 2229 . . . . . . 7 𝑋 = 𝑋
18 vex 2802 . . . . . . . 8 𝑥 ∈ V
192, 18opth 4323 . . . . . . 7 (⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩ ↔ (𝑋 = 𝑋𝑥 = (2nd𝑦)))
2017, 19mpbiran 946 . . . . . 6 (⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2115, 16, 203bitr3g 222 . . . . 5 (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = ⟨𝑋, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2221bicomd 141 . . . 4 (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨𝑋, 𝑥⟩))
2322ad2antll 491 . . 3 ((⊤ ∧ (𝑥𝐴𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨𝑋, 𝑥⟩))
241, 6, 8, 23f1o2d 6211 . 2 (⊤ → 𝐹:𝐴1-1-onto→({𝑋} × 𝐴))
2524mptru 1404 1 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wtru 1396  wcel 2200  Vcvv 2799  {csn 3666  cop 3669  cmpt 4145   × cxp 4717  1-1-ontowf1o 5317  cfv 5318  1st c1st 6284  2nd c2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  djuf1olemr  7221  djulf1o  7225  djurf1o  7226
  Copyright terms: Public domain W3C validator