| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuf1olem | GIF version | ||
| Description: Lemma for djulf1o 7186 and djurf1o 7187. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| djuf1olem.1 | ⊢ 𝑋 ∈ V |
| djuf1olem.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
| Ref | Expression |
|---|---|
| djuf1olem | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuf1olem.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) | |
| 2 | djuf1olem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 3 | 2 | snid 3674 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
| 4 | opelxpi 4725 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) | |
| 5 | 3, 4 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
| 7 | xp2nd 6275 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (2nd ‘𝑦) ∈ 𝐴) | |
| 8 | 7 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd ‘𝑦) ∈ 𝐴) |
| 9 | 1st2nd2 6284 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
| 10 | xp1st 6274 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) ∈ {𝑋}) | |
| 11 | elsni 3661 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {𝑋} → (1st ‘𝑦) = 𝑋) | |
| 12 | 10, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) = 𝑋) |
| 13 | 12 | opeq1d 3839 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝑋, (2nd ‘𝑦)〉) |
| 14 | 9, 13 | eqtrd 2240 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈𝑋, (2nd ‘𝑦)〉) |
| 15 | 14 | eqeq2d 2219 | . . . . . 6 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (〈𝑋, 𝑥〉 = 𝑦 ↔ 〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉)) |
| 16 | eqcom 2209 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈𝑋, 𝑥〉) | |
| 17 | eqid 2207 | . . . . . . 7 ⊢ 𝑋 = 𝑋 | |
| 18 | vex 2779 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 19 | 2, 18 | opth 4299 | . . . . . . 7 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ (𝑋 = 𝑋 ∧ 𝑥 = (2nd ‘𝑦))) |
| 20 | 17, 19 | mpbiran 943 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
| 21 | 15, 16, 20 | 3bitr3g 222 | . . . . 5 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = 〈𝑋, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
| 22 | 21 | bicomd 141 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
| 23 | 22 | ad2antll 491 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
| 24 | 1, 6, 8, 23 | f1o2d 6174 | . 2 ⊢ (⊤ → 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴)) |
| 25 | 24 | mptru 1382 | 1 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ⊤wtru 1374 ∈ wcel 2178 Vcvv 2776 {csn 3643 〈cop 3646 ↦ cmpt 4121 × cxp 4691 –1-1-onto→wf1o 5289 ‘cfv 5290 1st c1st 6247 2nd c2nd 6248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: djuf1olemr 7182 djulf1o 7186 djurf1o 7187 |
| Copyright terms: Public domain | W3C validator |