ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuf1olem GIF version

Theorem djuf1olem 6946
Description: Lemma for djulf1o 6951 and djurf1o 6952. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.)
Hypotheses
Ref Expression
djuf1olem.1 𝑋 ∈ V
djuf1olem.2 𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
Assertion
Ref Expression
djuf1olem 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
Distinct variable groups:   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem djuf1olem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 djuf1olem.2 . . 3 𝐹 = (𝑥𝐴 ↦ ⟨𝑋, 𝑥⟩)
2 djuf1olem.1 . . . . . 6 𝑋 ∈ V
32snid 3563 . . . . 5 𝑋 ∈ {𝑋}
4 opelxpi 4579 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝑥𝐴) → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
53, 4mpan 421 . . . 4 (𝑥𝐴 → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
65adantl 275 . . 3 ((⊤ ∧ 𝑥𝐴) → ⟨𝑋, 𝑥⟩ ∈ ({𝑋} × 𝐴))
7 xp2nd 6072 . . . 4 (𝑦 ∈ ({𝑋} × 𝐴) → (2nd𝑦) ∈ 𝐴)
87adantl 275 . . 3 ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd𝑦) ∈ 𝐴)
9 1st2nd2 6081 . . . . . . . 8 (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
10 xp1st 6071 . . . . . . . . . 10 (𝑦 ∈ ({𝑋} × 𝐴) → (1st𝑦) ∈ {𝑋})
11 elsni 3550 . . . . . . . . . 10 ((1st𝑦) ∈ {𝑋} → (1st𝑦) = 𝑋)
1210, 11syl 14 . . . . . . . . 9 (𝑦 ∈ ({𝑋} × 𝐴) → (1st𝑦) = 𝑋)
1312opeq1d 3719 . . . . . . . 8 (𝑦 ∈ ({𝑋} × 𝐴) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑋, (2nd𝑦)⟩)
149, 13eqtrd 2173 . . . . . . 7 (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = ⟨𝑋, (2nd𝑦)⟩)
1514eqeq2d 2152 . . . . . 6 (𝑦 ∈ ({𝑋} × 𝐴) → (⟨𝑋, 𝑥⟩ = 𝑦 ↔ ⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩))
16 eqcom 2142 . . . . . 6 (⟨𝑋, 𝑥⟩ = 𝑦𝑦 = ⟨𝑋, 𝑥⟩)
17 eqid 2140 . . . . . . 7 𝑋 = 𝑋
18 vex 2692 . . . . . . . 8 𝑥 ∈ V
192, 18opth 4167 . . . . . . 7 (⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩ ↔ (𝑋 = 𝑋𝑥 = (2nd𝑦)))
2017, 19mpbiran 925 . . . . . 6 (⟨𝑋, 𝑥⟩ = ⟨𝑋, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2115, 16, 203bitr3g 221 . . . . 5 (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = ⟨𝑋, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2221bicomd 140 . . . 4 (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨𝑋, 𝑥⟩))
2322ad2antll 483 . . 3 ((⊤ ∧ (𝑥𝐴𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨𝑋, 𝑥⟩))
241, 6, 8, 23f1o2d 5983 . 2 (⊤ → 𝐹:𝐴1-1-onto→({𝑋} × 𝐴))
2524mptru 1341 1 𝐹:𝐴1-1-onto→({𝑋} × 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1332  wtru 1333  wcel 1481  Vcvv 2689  {csn 3532  cop 3535  cmpt 3997   × cxp 4545  1-1-ontowf1o 5130  cfv 5131  1st c1st 6044  2nd c2nd 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047
This theorem is referenced by:  djuf1olemr  6947  djulf1o  6951  djurf1o  6952
  Copyright terms: Public domain W3C validator