Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuf1olem | GIF version |
Description: Lemma for djulf1o 6992 and djurf1o 6993. (Contributed by BJ and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
djuf1olem.1 | ⊢ 𝑋 ∈ V |
djuf1olem.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) |
Ref | Expression |
---|---|
djuf1olem | ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuf1olem.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 〈𝑋, 𝑥〉) | |
2 | djuf1olem.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
3 | 2 | snid 3591 | . . . . 5 ⊢ 𝑋 ∈ {𝑋} |
4 | opelxpi 4615 | . . . . 5 ⊢ ((𝑋 ∈ {𝑋} ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) | |
5 | 3, 4 | mpan 421 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
6 | 5 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 〈𝑋, 𝑥〉 ∈ ({𝑋} × 𝐴)) |
7 | xp2nd 6108 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (2nd ‘𝑦) ∈ 𝐴) | |
8 | 7 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({𝑋} × 𝐴)) → (2nd ‘𝑦) ∈ 𝐴) |
9 | 1st2nd2 6117 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
10 | xp1st 6107 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) ∈ {𝑋}) | |
11 | elsni 3578 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {𝑋} → (1st ‘𝑦) = 𝑋) | |
12 | 10, 11 | syl 14 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (1st ‘𝑦) = 𝑋) |
13 | 12 | opeq1d 3747 | . . . . . . . 8 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝑋, (2nd ‘𝑦)〉) |
14 | 9, 13 | eqtrd 2190 | . . . . . . 7 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → 𝑦 = 〈𝑋, (2nd ‘𝑦)〉) |
15 | 14 | eqeq2d 2169 | . . . . . 6 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (〈𝑋, 𝑥〉 = 𝑦 ↔ 〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉)) |
16 | eqcom 2159 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈𝑋, 𝑥〉) | |
17 | eqid 2157 | . . . . . . 7 ⊢ 𝑋 = 𝑋 | |
18 | vex 2715 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
19 | 2, 18 | opth 4196 | . . . . . . 7 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ (𝑋 = 𝑋 ∧ 𝑥 = (2nd ‘𝑦))) |
20 | 17, 19 | mpbiran 925 | . . . . . 6 ⊢ (〈𝑋, 𝑥〉 = 〈𝑋, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
21 | 15, 16, 20 | 3bitr3g 221 | . . . . 5 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑦 = 〈𝑋, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
22 | 21 | bicomd 140 | . . . 4 ⊢ (𝑦 ∈ ({𝑋} × 𝐴) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
23 | 22 | ad2antll 483 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ({𝑋} × 𝐴))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈𝑋, 𝑥〉)) |
24 | 1, 6, 8, 23 | f1o2d 6019 | . 2 ⊢ (⊤ → 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴)) |
25 | 24 | mptru 1344 | 1 ⊢ 𝐹:𝐴–1-1-onto→({𝑋} × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1335 ⊤wtru 1336 ∈ wcel 2128 Vcvv 2712 {csn 3560 〈cop 3563 ↦ cmpt 4025 × cxp 4581 –1-1-onto→wf1o 5166 ‘cfv 5167 1st c1st 6080 2nd c2nd 6081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 |
This theorem is referenced by: djuf1olemr 6988 djulf1o 6992 djurf1o 6993 |
Copyright terms: Public domain | W3C validator |