![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldvap | GIF version |
Description: The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvval.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
dvval.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
eldvap.g | ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
eldv.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
eldv.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
eldv.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
Ref | Expression |
---|---|
eldvap | ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | eldv.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | eldv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | dvval.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
5 | dvval.k | . . . . . 6 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
6 | 4, 5 | dvfvalap 14021 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
7 | 1, 2, 3, 6 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
8 | 7 | simpld 112 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
9 | 8 | eleq2d 2247 | . 2 ⊢ (𝜑 → (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
10 | df-br 4003 | . . 3 ⊢ (𝐵(𝑆 D 𝐹)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹)) | |
11 | 10 | bicomi 132 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)𝐶) |
12 | breq2 4006 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑤 # 𝑥 ↔ 𝑤 # 𝐵)) | |
13 | 12 | rabbidv 2726 | . . . . . 6 ⊢ (𝑥 = 𝐵 → {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} = {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵}) |
14 | fveq2 5514 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
15 | 14 | oveq2d 5888 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑧) − (𝐹‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝐵))) |
16 | oveq2 5880 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑧 − 𝑥) = (𝑧 − 𝐵)) | |
17 | 15, 16 | oveq12d 5890 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
18 | 13, 17 | mpteq12dv 4084 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) |
19 | eldvap.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
20 | 18, 19 | eqtr4di 2228 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = 𝐺) |
21 | id 19 | . . . 4 ⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) | |
22 | 20, 21 | oveq12d 5890 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (𝐺 limℂ 𝐵)) |
23 | 22 | opeliunxp2 4766 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵))) |
24 | 9, 11, 23 | 3bitr3g 222 | 1 ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {crab 2459 ⊆ wss 3129 {csn 3592 〈cop 3595 ∪ ciun 3886 class class class wbr 4002 ↦ cmpt 4063 × cxp 4623 ∘ ccom 4629 ⟶wf 5211 ‘cfv 5215 (class class class)co 5872 ℂcc 7806 − cmin 8124 # cap 8534 / cdiv 8625 abscabs 10999 ↾t crest 12676 MetOpencmopn 13314 intcnt 13464 limℂ climc 13994 D cdv 13995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 ax-cnex 7899 ax-resscn 7900 ax-1cn 7901 ax-1re 7902 ax-icn 7903 ax-addcl 7904 ax-addrcl 7905 ax-mulcl 7906 ax-mulrcl 7907 ax-addcom 7908 ax-mulcom 7909 ax-addass 7910 ax-mulass 7911 ax-distr 7912 ax-i2m1 7913 ax-0lt1 7914 ax-1rid 7915 ax-0id 7916 ax-rnegex 7917 ax-precex 7918 ax-cnre 7919 ax-pre-ltirr 7920 ax-pre-ltwlin 7921 ax-pre-lttrn 7922 ax-pre-apti 7923 ax-pre-ltadd 7924 ax-pre-mulgt0 7925 ax-pre-mulext 7926 ax-arch 7927 ax-caucvg 7928 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-ilim 4368 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-isom 5224 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-recs 6303 df-frec 6389 df-map 6647 df-pm 6648 df-sup 6980 df-inf 6981 df-pnf 7990 df-mnf 7991 df-xr 7992 df-ltxr 7993 df-le 7994 df-sub 8126 df-neg 8127 df-reap 8528 df-ap 8535 df-div 8626 df-inn 8916 df-2 8974 df-3 8975 df-4 8976 df-n0 9173 df-z 9250 df-uz 9525 df-q 9616 df-rp 9650 df-xneg 9768 df-xadd 9769 df-seqfrec 10441 df-exp 10515 df-cj 10844 df-re 10845 df-im 10846 df-rsqrt 11000 df-abs 11001 df-rest 12678 df-topgen 12697 df-psmet 13316 df-xmet 13317 df-met 13318 df-bl 13319 df-mopn 13320 df-top 13367 df-topon 13380 df-bases 13412 df-ntr 13467 df-limced 13996 df-dvap 13997 |
This theorem is referenced by: dvcl 14023 dvfgg 14028 dvidlemap 14031 dvcnp2cntop 14034 dvaddxxbr 14036 dvmulxxbr 14037 dvcoapbr 14042 dvcjbr 14043 dvrecap 14048 dveflem 14058 |
Copyright terms: Public domain | W3C validator |