ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldvap GIF version

Theorem eldvap 12820
Description: The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvval.t 𝑇 = (𝐾t 𝑆)
dvval.k 𝐾 = (MetOpen‘(abs ∘ − ))
eldvap.g 𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
eldv.s (𝜑𝑆 ⊆ ℂ)
eldv.f (𝜑𝐹:𝐴⟶ℂ)
eldv.a (𝜑𝐴𝑆)
Assertion
Ref Expression
eldvap (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐹,𝑧   𝑤,𝑆,𝑧   𝑧,𝐵,𝑤
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑧,𝑤)   𝑇(𝑧,𝑤)   𝐺(𝑧,𝑤)   𝐾(𝑧,𝑤)

Proof of Theorem eldvap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldv.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
2 eldv.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 eldv.a . . . . 5 (𝜑𝐴𝑆)
4 dvval.t . . . . . 6 𝑇 = (𝐾t 𝑆)
5 dvval.k . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
64, 5dvfvalap 12819 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
71, 2, 3, 6syl3anc 1216 . . . 4 (𝜑 → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
87simpld 111 . . 3 (𝜑 → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
98eleq2d 2209 . 2 (𝜑 → (⟨𝐵, 𝐶⟩ ∈ (𝑆 D 𝐹) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
10 df-br 3930 . . 3 (𝐵(𝑆 D 𝐹)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑆 D 𝐹))
1110bicomi 131 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)𝐶)
12 breq2 3933 . . . . . . 7 (𝑥 = 𝐵 → (𝑤 # 𝑥𝑤 # 𝐵))
1312rabbidv 2675 . . . . . 6 (𝑥 = 𝐵 → {𝑤𝐴𝑤 # 𝑥} = {𝑤𝐴𝑤 # 𝐵})
14 fveq2 5421 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1514oveq2d 5790 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑧) − (𝐹𝑥)) = ((𝐹𝑧) − (𝐹𝐵)))
16 oveq2 5782 . . . . . . 7 (𝑥 = 𝐵 → (𝑧𝑥) = (𝑧𝐵))
1715, 16oveq12d 5792 . . . . . 6 (𝑥 = 𝐵 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
1813, 17mpteq12dv 4010 . . . . 5 (𝑥 = 𝐵 → (𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))))
19 eldvap.g . . . . 5 𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
2018, 19syl6eqr 2190 . . . 4 (𝑥 = 𝐵 → (𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = 𝐺)
21 id 19 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
2220, 21oveq12d 5792 . . 3 (𝑥 = 𝐵 → ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝐵))
2322opeliunxp2 4679 . 2 (⟨𝐵, 𝐶⟩ ∈ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵)))
249, 11, 233bitr3g 221 1 (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {crab 2420  wss 3071  {csn 3527  cop 3530   ciun 3813   class class class wbr 3929  cmpt 3989   × cxp 4537  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7618  cmin 7933   # cap 8343   / cdiv 8432  abscabs 10769  t crest 12120  MetOpencmopn 12154  intcnt 12262   lim climc 12792   D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvcl  12821  dvfgg  12826  dvidlemap  12829  dvcnp2cntop  12832  dvaddxxbr  12834  dvmulxxbr  12835  dvcoapbr  12840  dvcjbr  12841  dvrecap  12846  dveflem  12855
  Copyright terms: Public domain W3C validator