| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldvap | GIF version | ||
| Description: The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| Ref | Expression |
|---|---|
| dvval.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
| dvval.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| eldvap.g | ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
| eldv.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| eldv.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| eldv.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| eldvap | ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | eldv.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | eldv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | dvval.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
| 5 | dvval.k | . . . . . 6 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 6 | 4, 5 | dvfvalap 15349 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
| 7 | 1, 2, 3, 6 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
| 8 | 7 | simpld 112 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
| 9 | 8 | eleq2d 2299 | . 2 ⊢ (𝜑 → (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 10 | df-br 4083 | . . 3 ⊢ (𝐵(𝑆 D 𝐹)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹)) | |
| 11 | 10 | bicomi 132 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)𝐶) |
| 12 | breq2 4086 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑤 # 𝑥 ↔ 𝑤 # 𝐵)) | |
| 13 | 12 | rabbidv 2788 | . . . . . 6 ⊢ (𝑥 = 𝐵 → {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} = {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵}) |
| 14 | fveq2 5626 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 15 | 14 | oveq2d 6016 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑧) − (𝐹‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝐵))) |
| 16 | oveq2 6008 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑧 − 𝑥) = (𝑧 − 𝐵)) | |
| 17 | 15, 16 | oveq12d 6018 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
| 18 | 13, 17 | mpteq12dv 4165 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) |
| 19 | eldvap.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
| 20 | 18, 19 | eqtr4di 2280 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = 𝐺) |
| 21 | id 19 | . . . 4 ⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) | |
| 22 | 20, 21 | oveq12d 6018 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (𝐺 limℂ 𝐵)) |
| 23 | 22 | opeliunxp2 4861 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵))) |
| 24 | 9, 11, 23 | 3bitr3g 222 | 1 ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 ⊆ wss 3197 {csn 3666 〈cop 3669 ∪ ciun 3964 class class class wbr 4082 ↦ cmpt 4144 × cxp 4716 ∘ ccom 4722 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 − cmin 8313 # cap 8724 / cdiv 8815 abscabs 11503 ↾t crest 13267 MetOpencmopn 14499 intcnt 14761 limℂ climc 15322 D cdv 15323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-map 6795 df-pm 6796 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-limced 15324 df-dvap 15325 |
| This theorem is referenced by: dvcl 15351 dvfgg 15356 dvidlemap 15359 dvidrelem 15360 dvidsslem 15361 dvcnp2cntop 15367 dvaddxxbr 15369 dvmulxxbr 15370 dvcoapbr 15375 dvcjbr 15376 dvrecap 15381 dveflem 15394 |
| Copyright terms: Public domain | W3C validator |