| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldvap | GIF version | ||
| Description: The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| Ref | Expression |
|---|---|
| dvval.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
| dvval.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| eldvap.g | ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
| eldv.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| eldv.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| eldv.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| eldvap | ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | eldv.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | eldv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | dvval.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
| 5 | dvval.k | . . . . . 6 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 6 | 4, 5 | dvfvalap 15268 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
| 7 | 1, 2, 3, 6 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
| 8 | 7 | simpld 112 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
| 9 | 8 | eleq2d 2277 | . 2 ⊢ (𝜑 → (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 10 | df-br 4060 | . . 3 ⊢ (𝐵(𝑆 D 𝐹)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹)) | |
| 11 | 10 | bicomi 132 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)𝐶) |
| 12 | breq2 4063 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑤 # 𝑥 ↔ 𝑤 # 𝐵)) | |
| 13 | 12 | rabbidv 2765 | . . . . . 6 ⊢ (𝑥 = 𝐵 → {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} = {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵}) |
| 14 | fveq2 5599 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 15 | 14 | oveq2d 5983 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑧) − (𝐹‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝐵))) |
| 16 | oveq2 5975 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑧 − 𝑥) = (𝑧 − 𝐵)) | |
| 17 | 15, 16 | oveq12d 5985 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
| 18 | 13, 17 | mpteq12dv 4142 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) |
| 19 | eldvap.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
| 20 | 18, 19 | eqtr4di 2258 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = 𝐺) |
| 21 | id 19 | . . . 4 ⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) | |
| 22 | 20, 21 | oveq12d 5985 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (𝐺 limℂ 𝐵)) |
| 23 | 22 | opeliunxp2 4836 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵))) |
| 24 | 9, 11, 23 | 3bitr3g 222 | 1 ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 {crab 2490 ⊆ wss 3174 {csn 3643 〈cop 3646 ∪ ciun 3941 class class class wbr 4059 ↦ cmpt 4121 × cxp 4691 ∘ ccom 4697 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 − cmin 8278 # cap 8689 / cdiv 8780 abscabs 11423 ↾t crest 13186 MetOpencmopn 14418 intcnt 14680 limℂ climc 15241 D cdv 15242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-pm 6761 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-limced 15243 df-dvap 15244 |
| This theorem is referenced by: dvcl 15270 dvfgg 15275 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dvcnp2cntop 15286 dvaddxxbr 15288 dvmulxxbr 15289 dvcoapbr 15294 dvcjbr 15295 dvrecap 15300 dveflem 15313 |
| Copyright terms: Public domain | W3C validator |