Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldvap GIF version

Theorem eldvap 13011
 Description: The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvval.t 𝑇 = (𝐾t 𝑆)
dvval.k 𝐾 = (MetOpen‘(abs ∘ − ))
eldvap.g 𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
eldv.s (𝜑𝑆 ⊆ ℂ)
eldv.f (𝜑𝐹:𝐴⟶ℂ)
eldv.a (𝜑𝐴𝑆)
Assertion
Ref Expression
eldvap (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐹,𝑧   𝑤,𝑆,𝑧   𝑧,𝐵,𝑤
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑧,𝑤)   𝑇(𝑧,𝑤)   𝐺(𝑧,𝑤)   𝐾(𝑧,𝑤)

Proof of Theorem eldvap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldv.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
2 eldv.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
3 eldv.a . . . . 5 (𝜑𝐴𝑆)
4 dvval.t . . . . . 6 𝑇 = (𝐾t 𝑆)
5 dvval.k . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
64, 5dvfvalap 13010 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
71, 2, 3, 6syl3anc 1220 . . . 4 (𝜑 → ((𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ)))
87simpld 111 . . 3 (𝜑 → (𝑆 D 𝐹) = 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
98eleq2d 2227 . 2 (𝜑 → (⟨𝐵, 𝐶⟩ ∈ (𝑆 D 𝐹) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
10 df-br 3966 . . 3 (𝐵(𝑆 D 𝐹)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑆 D 𝐹))
1110bicomi 131 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)𝐶)
12 breq2 3969 . . . . . . 7 (𝑥 = 𝐵 → (𝑤 # 𝑥𝑤 # 𝐵))
1312rabbidv 2701 . . . . . 6 (𝑥 = 𝐵 → {𝑤𝐴𝑤 # 𝑥} = {𝑤𝐴𝑤 # 𝐵})
14 fveq2 5465 . . . . . . . 8 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
1514oveq2d 5834 . . . . . . 7 (𝑥 = 𝐵 → ((𝐹𝑧) − (𝐹𝑥)) = ((𝐹𝑧) − (𝐹𝐵)))
16 oveq2 5826 . . . . . . 7 (𝑥 = 𝐵 → (𝑧𝑥) = (𝑧𝐵))
1715, 16oveq12d 5836 . . . . . 6 (𝑥 = 𝐵 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
1813, 17mpteq12dv 4046 . . . . 5 (𝑥 = 𝐵 → (𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵))))
19 eldvap.g . . . . 5 𝐺 = (𝑧 ∈ {𝑤𝐴𝑤 # 𝐵} ↦ (((𝐹𝑧) − (𝐹𝐵)) / (𝑧𝐵)))
2018, 19eqtr4di 2208 . . . 4 (𝑥 = 𝐵 → (𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = 𝐺)
21 id 19 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
2220, 21oveq12d 5836 . . 3 (𝑥 = 𝐵 → ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (𝐺 lim 𝐵))
2322opeliunxp2 4723 . 2 (⟨𝐵, 𝐶⟩ ∈ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤𝐴𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵)))
249, 11, 233bitr3g 221 1 (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 lim 𝐵))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1335   ∈ wcel 2128  {crab 2439   ⊆ wss 3102  {csn 3560  ⟨cop 3563  ∪ ciun 3849   class class class wbr 3965   ↦ cmpt 4025   × cxp 4581   ∘ ccom 4587  ⟶wf 5163  ‘cfv 5167  (class class class)co 5818  ℂcc 7713   − cmin 8029   # cap 8439   / cdiv 8528  abscabs 10879   ↾t crest 12311  MetOpencmopn 12345  intcnt 12453   limℂ climc 12983   D cdv 12984 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-map 6588  df-pm 6589  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-xneg 9661  df-xadd 9662  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-rest 12313  df-topgen 12332  df-psmet 12347  df-xmet 12348  df-met 12349  df-bl 12350  df-mopn 12351  df-top 12356  df-topon 12369  df-bases 12401  df-ntr 12456  df-limced 12985  df-dvap 12986 This theorem is referenced by:  dvcl  13012  dvfgg  13017  dvidlemap  13020  dvcnp2cntop  13023  dvaddxxbr  13025  dvmulxxbr  13026  dvcoapbr  13031  dvcjbr  13032  dvrecap  13037  dveflem  13047
 Copyright terms: Public domain W3C validator