![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldvap | GIF version |
Description: The differentiable predicate. A function 𝐹 is differentiable at 𝐵 with derivative 𝐶 iff 𝐹 is defined in a neighborhood of 𝐵 and the difference quotient has limit 𝐶 at 𝐵. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvval.t | ⊢ 𝑇 = (𝐾 ↾t 𝑆) |
dvval.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
eldvap.g | ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
eldv.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
eldv.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
eldv.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
Ref | Expression |
---|---|
eldvap | ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldv.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | eldv.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | eldv.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | dvval.t | . . . . . 6 ⊢ 𝑇 = (𝐾 ↾t 𝑆) | |
5 | dvval.k | . . . . . 6 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
6 | 4, 5 | dvfvalap 12605 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ 𝑆) → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
7 | 1, 2, 3, 6 | syl3anc 1199 | . . . 4 ⊢ (𝜑 → ((𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ∧ (𝑆 D 𝐹) ⊆ (((int‘𝑇)‘𝐴) × ℂ))) |
8 | 7 | simpld 111 | . . 3 ⊢ (𝜑 → (𝑆 D 𝐹) = ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
9 | 8 | eleq2d 2184 | . 2 ⊢ (𝜑 → (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
10 | df-br 3896 | . . 3 ⊢ (𝐵(𝑆 D 𝐹)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹)) | |
11 | 10 | bicomi 131 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑆 D 𝐹) ↔ 𝐵(𝑆 D 𝐹)𝐶) |
12 | breq2 3899 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑤 # 𝑥 ↔ 𝑤 # 𝐵)) | |
13 | 12 | rabbidv 2646 | . . . . . 6 ⊢ (𝑥 = 𝐵 → {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} = {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵}) |
14 | fveq2 5375 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
15 | 14 | oveq2d 5744 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑧) − (𝐹‘𝑥)) = ((𝐹‘𝑧) − (𝐹‘𝐵))) |
16 | oveq2 5736 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑧 − 𝑥) = (𝑧 − 𝐵)) | |
17 | 15, 16 | oveq12d 5746 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) |
18 | 13, 17 | mpteq12dv 3970 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵)))) |
19 | eldvap.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝐵} ↦ (((𝐹‘𝑧) − (𝐹‘𝐵)) / (𝑧 − 𝐵))) | |
20 | 18, 19 | syl6eqr 2165 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = 𝐺) |
21 | id 19 | . . . 4 ⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) | |
22 | 20, 21 | oveq12d 5746 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (𝐺 limℂ 𝐵)) |
23 | 22 | opeliunxp2 4639 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ ∪ 𝑥 ∈ ((int‘𝑇)‘𝐴)({𝑥} × ((𝑧 ∈ {𝑤 ∈ 𝐴 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵))) |
24 | 9, 11, 23 | 3bitr3g 221 | 1 ⊢ (𝜑 → (𝐵(𝑆 D 𝐹)𝐶 ↔ (𝐵 ∈ ((int‘𝑇)‘𝐴) ∧ 𝐶 ∈ (𝐺 limℂ 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 {crab 2394 ⊆ wss 3037 {csn 3493 〈cop 3496 ∪ ciun 3779 class class class wbr 3895 ↦ cmpt 3949 × cxp 4497 ∘ ccom 4503 ⟶wf 5077 ‘cfv 5081 (class class class)co 5728 ℂcc 7545 − cmin 7856 # cap 8261 / cdiv 8345 abscabs 10661 ↾t crest 11963 MetOpencmopn 11997 intcnt 12105 limℂ climc 12579 D cdv 12580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 ax-caucvg 7665 |
This theorem depends on definitions: df-bi 116 df-stab 799 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-isom 5090 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-map 6498 df-pm 6499 df-sup 6823 df-inf 6824 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-n0 8882 df-z 8959 df-uz 9229 df-q 9314 df-rp 9344 df-xneg 9452 df-xadd 9453 df-seqfrec 10112 df-exp 10186 df-cj 10507 df-re 10508 df-im 10509 df-rsqrt 10662 df-abs 10663 df-rest 11965 df-topgen 11984 df-psmet 11999 df-xmet 12000 df-met 12001 df-bl 12002 df-mopn 12003 df-top 12008 df-topon 12021 df-bases 12053 df-ntr 12108 df-limced 12581 df-dvap 12582 |
This theorem is referenced by: dvcl 12607 dvfgg 12612 dvidlemap 12615 dvcnp2cntop 12618 dvaddxxbr 12620 dvmulxxbr 12621 |
Copyright terms: Public domain | W3C validator |