ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr4rd GIF version

Theorem 3bitr4rd 220
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr4d.1 (𝜑 → (𝜓𝜒))
3bitr4d.2 (𝜑 → (𝜃𝜓))
3bitr4d.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3bitr4rd (𝜑 → (𝜏𝜃))

Proof of Theorem 3bitr4rd
StepHypRef Expression
1 3bitr4d.3 . . 3 (𝜑 → (𝜏𝜒))
2 3bitr4d.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2bitr4d 190 . 2 (𝜑 → (𝜏𝜓))
4 3bitr4d.2 . 2 (𝜑 → (𝜃𝜓))
53, 4bitr4d 190 1 (𝜑 → (𝜏𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  inimasn  5016  dmfco  5549  omp1eomlem  7051  ltanqg  7333  genpassl  7457  genpassu  7458  ltexprlemloc  7540  caucvgprlemcanl  7577  cauappcvgprlemladdrl  7590  caucvgprlemladdrl  7611  caucvgprprlemaddq  7641  apneg  8501  lemuldiv  8768  msq11  8789  negiso  8842  avglt2  9088  xleaddadd  9815  iooshf  9880  qtri3or  10169  sq11ap  10612  hashen  10687  fihashdom  10706  cjap  10835  sqrt11ap  10967  mingeb  11170  xrnegiso  11190  clim2c  11212  climabs0  11235  absefib  11698  efieq1re  11699  nndivides  11724  oddnn02np1  11803  oddge22np1  11804  evennn02n  11805  evennn2n  11806  halfleoddlt  11817  pc2dvds  12247  pcmpt  12259  cnntr  12783  cndis  12799  cnpdis  12800  lmres  12806  txhmeo  12877  blininf  12982  cncfmet  13137
  Copyright terms: Public domain W3C validator