| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 191 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5145 dmfco 5701 omp1eomlem 7257 ltanqg 7583 genpassl 7707 genpassu 7708 ltexprlemloc 7790 caucvgprlemcanl 7827 cauappcvgprlemladdrl 7840 caucvgprlemladdrl 7861 caucvgprprlemaddq 7891 apneg 8754 lemuldiv 9024 msq11 9045 negiso 9098 avglt2 9347 xleaddadd 10079 iooshf 10144 qtri3or 10455 sq11ap 10924 hashen 11001 fihashdom 11020 cjap 11412 sqrt11ap 11544 mingeb 11748 xrnegiso 11768 clim2c 11790 climabs0 11813 absefib 12277 efieq1re 12278 nndivides 12303 oddnn02np1 12386 oddge22np1 12387 evennn02n 12388 evennn2n 12389 halfleoddlt 12400 pc2dvds 12848 pcmpt 12861 issubm 13500 cnntr 14893 cndis 14909 cnpdis 14910 lmres 14916 txhmeo 14987 blininf 15092 cncfmet 15260 |
| Copyright terms: Public domain | W3C validator |