Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 190 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 190 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: inimasn 5021 dmfco 5554 omp1eomlem 7059 ltanqg 7341 genpassl 7465 genpassu 7466 ltexprlemloc 7548 caucvgprlemcanl 7585 cauappcvgprlemladdrl 7598 caucvgprlemladdrl 7619 caucvgprprlemaddq 7649 apneg 8509 lemuldiv 8776 msq11 8797 negiso 8850 avglt2 9096 xleaddadd 9823 iooshf 9888 qtri3or 10178 sq11ap 10622 hashen 10697 fihashdom 10716 cjap 10848 sqrt11ap 10980 mingeb 11183 xrnegiso 11203 clim2c 11225 climabs0 11248 absefib 11711 efieq1re 11712 nndivides 11737 oddnn02np1 11817 oddge22np1 11818 evennn02n 11819 evennn2n 11820 halfleoddlt 11831 pc2dvds 12261 pcmpt 12273 cnntr 12875 cndis 12891 cnpdis 12892 lmres 12898 txhmeo 12969 blininf 13074 cncfmet 13229 |
Copyright terms: Public domain | W3C validator |