Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
Ref | Expression |
---|---|
3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr4d 190 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
5 | 3, 4 | bitr4d 190 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: inimasn 5016 dmfco 5549 omp1eomlem 7051 ltanqg 7333 genpassl 7457 genpassu 7458 ltexprlemloc 7540 caucvgprlemcanl 7577 cauappcvgprlemladdrl 7590 caucvgprlemladdrl 7611 caucvgprprlemaddq 7641 apneg 8501 lemuldiv 8768 msq11 8789 negiso 8842 avglt2 9088 xleaddadd 9815 iooshf 9880 qtri3or 10169 sq11ap 10612 hashen 10687 fihashdom 10706 cjap 10835 sqrt11ap 10967 mingeb 11170 xrnegiso 11190 clim2c 11212 climabs0 11235 absefib 11698 efieq1re 11699 nndivides 11724 oddnn02np1 11803 oddge22np1 11804 evennn02n 11805 evennn2n 11806 halfleoddlt 11817 pc2dvds 12247 pcmpt 12259 cnntr 12783 cndis 12799 cnpdis 12800 lmres 12806 txhmeo 12877 blininf 12982 cncfmet 13137 |
Copyright terms: Public domain | W3C validator |