| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 191 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5097 dmfco 5641 omp1eomlem 7178 ltanqg 7495 genpassl 7619 genpassu 7620 ltexprlemloc 7702 caucvgprlemcanl 7739 cauappcvgprlemladdrl 7752 caucvgprlemladdrl 7773 caucvgprprlemaddq 7803 apneg 8666 lemuldiv 8936 msq11 8957 negiso 9010 avglt2 9259 xleaddadd 9991 iooshf 10056 qtri3or 10364 sq11ap 10833 hashen 10910 fihashdom 10929 cjap 11136 sqrt11ap 11268 mingeb 11472 xrnegiso 11492 clim2c 11514 climabs0 11537 absefib 12001 efieq1re 12002 nndivides 12027 oddnn02np1 12110 oddge22np1 12111 evennn02n 12112 evennn2n 12113 halfleoddlt 12124 pc2dvds 12572 pcmpt 12585 issubm 13222 cnntr 14615 cndis 14631 cnpdis 14632 lmres 14638 txhmeo 14709 blininf 14814 cncfmet 14982 |
| Copyright terms: Public domain | W3C validator |