| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 191 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5088 dmfco 5632 omp1eomlem 7169 ltanqg 7486 genpassl 7610 genpassu 7611 ltexprlemloc 7693 caucvgprlemcanl 7730 cauappcvgprlemladdrl 7743 caucvgprlemladdrl 7764 caucvgprprlemaddq 7794 apneg 8657 lemuldiv 8927 msq11 8948 negiso 9001 avglt2 9250 xleaddadd 9981 iooshf 10046 qtri3or 10349 sq11ap 10818 hashen 10895 fihashdom 10914 cjap 11090 sqrt11ap 11222 mingeb 11426 xrnegiso 11446 clim2c 11468 climabs0 11491 absefib 11955 efieq1re 11956 nndivides 11981 oddnn02np1 12064 oddge22np1 12065 evennn02n 12066 evennn2n 12067 halfleoddlt 12078 pc2dvds 12526 pcmpt 12539 issubm 13176 cnntr 14569 cndis 14585 cnpdis 14586 lmres 14592 txhmeo 14663 blininf 14768 cncfmet 14936 |
| Copyright terms: Public domain | W3C validator |