| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 191 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5109 dmfco 5660 omp1eomlem 7211 ltanqg 7533 genpassl 7657 genpassu 7658 ltexprlemloc 7740 caucvgprlemcanl 7777 cauappcvgprlemladdrl 7790 caucvgprlemladdrl 7811 caucvgprprlemaddq 7841 apneg 8704 lemuldiv 8974 msq11 8995 negiso 9048 avglt2 9297 xleaddadd 10029 iooshf 10094 qtri3or 10405 sq11ap 10874 hashen 10951 fihashdom 10970 cjap 11292 sqrt11ap 11424 mingeb 11628 xrnegiso 11648 clim2c 11670 climabs0 11693 absefib 12157 efieq1re 12158 nndivides 12183 oddnn02np1 12266 oddge22np1 12267 evennn02n 12268 evennn2n 12269 halfleoddlt 12280 pc2dvds 12728 pcmpt 12741 issubm 13379 cnntr 14772 cndis 14788 cnpdis 14789 lmres 14795 txhmeo 14866 blininf 14971 cncfmet 15139 |
| Copyright terms: Public domain | W3C validator |