| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 191 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5088 dmfco 5630 omp1eomlem 7161 ltanqg 7469 genpassl 7593 genpassu 7594 ltexprlemloc 7676 caucvgprlemcanl 7713 cauappcvgprlemladdrl 7726 caucvgprlemladdrl 7747 caucvgprprlemaddq 7777 apneg 8640 lemuldiv 8910 msq11 8931 negiso 8984 avglt2 9233 xleaddadd 9964 iooshf 10029 qtri3or 10332 sq11ap 10801 hashen 10878 fihashdom 10897 cjap 11073 sqrt11ap 11205 mingeb 11409 xrnegiso 11429 clim2c 11451 climabs0 11474 absefib 11938 efieq1re 11939 nndivides 11964 oddnn02np1 12047 oddge22np1 12048 evennn02n 12049 evennn2n 12050 halfleoddlt 12061 pc2dvds 12509 pcmpt 12522 issubm 13114 cnntr 14471 cndis 14487 cnpdis 14488 lmres 14494 txhmeo 14565 blininf 14670 cncfmet 14838 |
| Copyright terms: Public domain | W3C validator |