| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| 3bitr4d.3 | ⊢ (𝜑 → (𝜏 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 3bitr4rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.3 | . . 3 ⊢ (𝜑 → (𝜏 ↔ 𝜒)) | |
| 2 | 3bitr4d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr4d 191 | . 2 ⊢ (𝜑 → (𝜏 ↔ 𝜓)) |
| 4 | 3bitr4d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) | |
| 5 | 3, 4 | bitr4d 191 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: inimasn 5088 dmfco 5632 omp1eomlem 7169 ltanqg 7484 genpassl 7608 genpassu 7609 ltexprlemloc 7691 caucvgprlemcanl 7728 cauappcvgprlemladdrl 7741 caucvgprlemladdrl 7762 caucvgprprlemaddq 7792 apneg 8655 lemuldiv 8925 msq11 8946 negiso 8999 avglt2 9248 xleaddadd 9979 iooshf 10044 qtri3or 10347 sq11ap 10816 hashen 10893 fihashdom 10912 cjap 11088 sqrt11ap 11220 mingeb 11424 xrnegiso 11444 clim2c 11466 climabs0 11489 absefib 11953 efieq1re 11954 nndivides 11979 oddnn02np1 12062 oddge22np1 12063 evennn02n 12064 evennn2n 12065 halfleoddlt 12076 pc2dvds 12524 pcmpt 12537 issubm 13174 cnntr 14545 cndis 14561 cnpdis 14562 lmres 14568 txhmeo 14639 blininf 14744 cncfmet 14912 |
| Copyright terms: Public domain | W3C validator |