| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrgmcl | GIF version | ||
| Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgmcl.p | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| subrgmcl | ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 2 | 1 | subrgring 14030 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 3 | 2 | 3ad2ant1 1021 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 4 | simp2 1001 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 5 | 1 | subrgbas 14036 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 6 | 5 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 7 | 4, 6 | eleqtrd 2285 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 8 | simp3 1002 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) | |
| 9 | 8, 6 | eleqtrd 2285 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 10 | eqid 2206 | . . . 4 ⊢ (Base‘(𝑅 ↾s 𝐴)) = (Base‘(𝑅 ↾s 𝐴)) | |
| 11 | eqid 2206 | . . . 4 ⊢ (.r‘(𝑅 ↾s 𝐴)) = (.r‘(𝑅 ↾s 𝐴)) | |
| 12 | 10, 11 | ringcl 13819 | . . 3 ⊢ (((𝑅 ↾s 𝐴) ∈ Ring ∧ 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑌 ∈ (Base‘(𝑅 ↾s 𝐴))) → (𝑋(.r‘(𝑅 ↾s 𝐴))𝑌) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 13 | 3, 7, 9, 12 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋(.r‘(𝑅 ↾s 𝐴))𝑌) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 14 | subrgrcl 14032 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 15 | subrgmcl.p | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 16 | 1, 15 | ressmulrg 13021 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → · = (.r‘(𝑅 ↾s 𝐴))) |
| 17 | 14, 16 | mpdan 421 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → · = (.r‘(𝑅 ↾s 𝐴))) |
| 18 | 17 | 3ad2ant1 1021 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → · = (.r‘(𝑅 ↾s 𝐴))) |
| 19 | 18 | oveqd 5968 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) = (𝑋(.r‘(𝑅 ↾s 𝐴))𝑌)) |
| 20 | 13, 19, 6 | 3eltr4d 2290 | 1 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 ↾s cress 12877 .rcmulr 12954 Ringcrg 13802 SubRingcsubrg 14023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-subg 13550 df-mgp 13727 df-ring 13804 df-subrg 14025 |
| This theorem is referenced by: issubrg2 14047 subrgintm 14049 dvply2g 15282 |
| Copyright terms: Public domain | W3C validator |