| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidcl | GIF version | ||
| Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringidcl.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidcl | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13973 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | eqid 2229 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 4 | eqid 2229 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 5 | 3, 4 | mndidcl 13471 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
| 7 | ringidcl.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 8 | 1, 7 | ringidvalg 13932 | . 2 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
| 9 | ringidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | 1, 9 | mgpbasg 13897 | . 2 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 11 | 6, 8, 10 | 3eltr4d 2313 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 Basecbs 13040 0gc0g 13297 Mndcmnd 13457 mulGrpcmgp 13891 1rcur 13930 Ringcrg 13967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mgp 13892 df-ur 13931 df-ring 13969 |
| This theorem is referenced by: ringid 13997 ringo2times 13999 ringcom 14002 ringnegl 14022 ringnegr 14023 ringmneg1 14024 ringmneg2 14025 ringressid 14034 imasring 14035 opprring 14050 dvdsrid 14072 dvdsrneg 14075 1unit 14079 ringinvdv 14117 elrhmunit 14149 isnzr2 14156 subrgid 14195 rrgnz 14240 lmod1cl 14287 lmodvsneg 14303 lmodsubvs 14315 lmodsubdi 14316 lmodsubdir 14317 lmodprop2d 14320 rmodislmod 14323 lssvnegcl 14348 mulgrhm 14581 zrhmulg 14592 psr1clfi 14660 |
| Copyright terms: Public domain | W3C validator |