| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidcl | GIF version | ||
| Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringidcl.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidcl | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13951 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | eqid 2229 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 4 | eqid 2229 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 5 | 3, 4 | mndidcl 13449 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
| 7 | ringidcl.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 8 | 1, 7 | ringidvalg 13910 | . 2 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
| 9 | ringidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | 1, 9 | mgpbasg 13875 | . 2 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 11 | 6, 8, 10 | 3eltr4d 2313 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 Basecbs 13018 0gc0g 13275 Mndcmnd 13435 mulGrpcmgp 13869 1rcur 13908 Ringcrg 13945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mgp 13870 df-ur 13909 df-ring 13947 |
| This theorem is referenced by: ringid 13975 ringo2times 13977 ringcom 13980 ringnegl 14000 ringnegr 14001 ringmneg1 14002 ringmneg2 14003 ringressid 14012 imasring 14013 opprring 14028 dvdsrid 14049 dvdsrneg 14052 1unit 14056 ringinvdv 14094 elrhmunit 14126 isnzr2 14133 subrgid 14172 rrgnz 14217 lmod1cl 14264 lmodvsneg 14280 lmodsubvs 14292 lmodsubdi 14293 lmodsubdir 14294 lmodprop2d 14297 rmodislmod 14300 lssvnegcl 14325 mulgrhm 14558 zrhmulg 14569 psr1clfi 14637 |
| Copyright terms: Public domain | W3C validator |