| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidcl | GIF version | ||
| Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringidcl.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidcl | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13634 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | eqid 2196 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 4 | eqid 2196 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 5 | 3, 4 | mndidcl 13132 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
| 7 | ringidcl.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 8 | 1, 7 | ringidvalg 13593 | . 2 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
| 9 | ringidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | 1, 9 | mgpbasg 13558 | . 2 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 11 | 6, 8, 10 | 3eltr4d 2280 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 Basecbs 12703 0gc0g 12958 Mndcmnd 13118 mulGrpcmgp 13552 1rcur 13591 Ringcrg 13628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mgp 13553 df-ur 13592 df-ring 13630 |
| This theorem is referenced by: ringid 13658 ringo2times 13660 ringcom 13663 ringnegl 13683 ringnegr 13684 ringmneg1 13685 ringmneg2 13686 ringressid 13695 imasring 13696 opprring 13711 dvdsrid 13732 dvdsrneg 13735 1unit 13739 ringinvdv 13777 elrhmunit 13809 isnzr2 13816 subrgid 13855 rrgnz 13900 lmod1cl 13947 lmodvsneg 13963 lmodsubvs 13975 lmodsubdi 13976 lmodsubdir 13977 lmodprop2d 13980 rmodislmod 13983 lssvnegcl 14008 mulgrhm 14241 zrhmulg 14252 psr1clfi 14316 |
| Copyright terms: Public domain | W3C validator |