Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringidcl | GIF version |
Description: The unit element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidcl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringidcl.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidcl | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | ringmgp 12978 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
3 | eqid 2175 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
4 | eqid 2175 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
5 | 3, 4 | mndidcl 12696 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
7 | ringidcl.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
8 | 1, 7 | ringidvalg 12937 | . 2 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
9 | ringidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
10 | 1, 9 | mgpbasg 12930 | . 2 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
11 | 6, 8, 10 | 3eltr4d 2259 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 Basecbs 12428 0gc0g 12626 Mndcmnd 12682 mulGrpcmgp 12925 1rcur 12935 Ringcrg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-mgp 12926 df-ur 12936 df-ring 12974 |
This theorem is referenced by: ringid 13002 rngo2times 13004 ringcom 13006 |
Copyright terms: Public domain | W3C validator |