![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringidcl | GIF version |
Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidcl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringidcl.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidcl | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | ringmgp 13191 | . . 3 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
3 | eqid 2177 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
4 | eqid 2177 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
5 | 3, 4 | mndidcl 12837 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (0g‘(mulGrp‘𝑅)) ∈ (Base‘(mulGrp‘𝑅))) |
7 | ringidcl.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
8 | 1, 7 | ringidvalg 13150 | . 2 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
9 | ringidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
10 | 1, 9 | mgpbasg 13142 | . 2 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
11 | 6, 8, 10 | 3eltr4d 2261 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ‘cfv 5218 Basecbs 12465 0gc0g 12711 Mndcmnd 12823 mulGrpcmgp 13136 1rcur 13148 Ringcrg 13185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-mgp 13137 df-ur 13149 df-ring 13187 |
This theorem is referenced by: ringid 13215 ringo2times 13217 ringcom 13220 ringnegl 13234 ringnegr 13235 ringmneg1 13236 ringmneg2 13237 ringressid 13244 opprring 13255 dvdsrid 13275 dvdsrneg 13278 1unit 13282 ringinvdv 13320 subrgid 13350 lmod1cl 13411 lmodvsneg 13427 lmodsubvs 13439 lmodsubdi 13440 lmodsubdir 13441 lmodprop2d 13444 rmodislmod 13447 lssvnegcl 13469 |
Copyright terms: Public domain | W3C validator |