ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgunit GIF version

Theorem subrgunit 13365
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgunit.4 𝐼 = (invr𝑅)
Assertion
Ref Expression
subrgunit (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . . 5 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . . 5 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 13362 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
54sselda 3157 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑈)
61subrgbas 13356 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
76adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝐴 = (Base‘𝑆))
83a1i 9 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑉 = (Unit‘𝑆))
91subrgring 13350 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
10 ringsrg 13229 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
119, 10syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
1211adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑆 ∈ SRing)
13 simpr 110 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑉)
147, 8, 12, 13unitcld 13282 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝐴)
15 eqid 2177 . . . . . 6 (invr𝑆) = (invr𝑆)
16 eqid 2177 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
173, 15, 16ringinvcl 13299 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
189, 17sylan 283 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
19 subrgunit.4 . . . . 5 𝐼 = (invr𝑅)
201, 19, 3, 15subrginv 13363 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) = ((invr𝑆)‘𝑋))
2118, 20, 73eltr4d 2261 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝐴)
225, 14, 213jca 1177 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴))
23 eqidd 2178 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (Base‘𝑆) = (Base‘𝑆))
24 eqidd 2178 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (∥r𝑆) = (∥r𝑆))
2511adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑆 ∈ SRing)
26 eqidd 2178 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑆) = (.r𝑆))
27 simpr2 1004 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝐴)
286adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆))
2927, 28eleqtrd 2256 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆))
30 simpr3 1005 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ 𝐴)
3130, 28eleqtrd 2256 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ (Base‘𝑆))
3223, 24, 25, 26, 29, 31dvdsrmuld 13270 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
33 subrgrcl 13352 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
34 simpr1 1003 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑈)
35 eqid 2177 . . . . . . 7 (.r𝑅) = (.r𝑅)
36 eqid 2177 . . . . . . 7 (1r𝑅) = (1r𝑅)
372, 19, 35, 36unitlinv 13300 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
3833, 34, 37syl2an2r 595 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
391, 35ressmulrg 12605 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
4033, 39mpdan 421 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
4140adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑅) = (.r𝑆))
4241oveqd 5894 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = ((𝐼𝑋)(.r𝑆)𝑋))
431, 36subrg1 13357 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4443adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (1r𝑅) = (1r𝑆))
4538, 42, 443eqtr3d 2218 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑆)𝑋) = (1r𝑆))
4632, 45breqtrd 4031 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)(1r𝑆))
479adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑆 ∈ Ring)
48 eqid 2177 . . . . . . 7 (oppr𝑆) = (oppr𝑆)
4948, 16opprbasg 13252 . . . . . 6 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
5047, 49syl 14 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (Base‘𝑆) = (Base‘(oppr𝑆)))
51 eqidd 2178 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
5248opprring 13254 . . . . . 6 (𝑆 ∈ Ring → (oppr𝑆) ∈ Ring)
53 ringsrg 13229 . . . . . 6 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ SRing)
5447, 52, 533syl 17 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (oppr𝑆) ∈ SRing)
55 eqidd 2178 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r‘(oppr𝑆)) = (.r‘(oppr𝑆)))
5650, 51, 54, 55, 29, 31dvdsrmuld 13270 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
57 eqid 2177 . . . . . . 7 (.r𝑆) = (.r𝑆)
58 eqid 2177 . . . . . . 7 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
5916, 57, 48, 58opprmulg 13248 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐼𝑋) ∈ (Base‘𝑆) ∧ 𝑋 ∈ (Base‘𝑆)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋)))
6047, 31, 29, 59syl3anc 1238 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋)))
612, 19, 35, 36unitrinv 13301 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
6233, 34, 61syl2an2r 595 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
6341oveqd 5894 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (𝑋(.r𝑆)(𝐼𝑋)))
6462, 63, 443eqtr3d 2218 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑆)(𝐼𝑋)) = (1r𝑆))
6560, 64eqtrd 2210 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (1r𝑆))
6656, 65breqtrd 4031 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))(1r𝑆))
673a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
68 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
69 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
70 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
71 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7267, 68, 69, 70, 71, 11isunitd 13280 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆))))
7372adantr 276 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆))))
7446, 66, 73mpbir2and 944 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑉)
7522, 74impbida 596 1 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5877  Basecbs 12464  s cress 12465  .rcmulr 12539  1rcur 13147  SRingcsrg 13151  Ringcrg 13184  opprcoppr 13244  rcdsr 13260  Unitcui 13261  invrcinvr 13294  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-tpos 6248  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-oppr 13245  df-dvdsr 13263  df-unit 13264  df-invr 13295  df-subrg 13345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator