ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgunit GIF version

Theorem subrgunit 14211
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgunit.4 𝐼 = (invr𝑅)
Assertion
Ref Expression
subrgunit (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . . 5 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . . 5 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 14208 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
54sselda 3224 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑈)
61subrgbas 14202 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
76adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝐴 = (Base‘𝑆))
83a1i 9 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑉 = (Unit‘𝑆))
91subrgring 14196 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
10 ringsrg 14018 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
119, 10syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
1211adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑆 ∈ SRing)
13 simpr 110 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑉)
147, 8, 12, 13unitcld 14080 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝐴)
15 eqid 2229 . . . . . 6 (invr𝑆) = (invr𝑆)
16 eqid 2229 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
173, 15, 16ringinvcl 14097 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
189, 17sylan 283 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
19 subrgunit.4 . . . . 5 𝐼 = (invr𝑅)
201, 19, 3, 15subrginv 14209 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) = ((invr𝑆)‘𝑋))
2118, 20, 73eltr4d 2313 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝐴)
225, 14, 213jca 1201 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴))
23 eqidd 2230 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (Base‘𝑆) = (Base‘𝑆))
24 eqidd 2230 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (∥r𝑆) = (∥r𝑆))
2511adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑆 ∈ SRing)
26 eqidd 2230 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑆) = (.r𝑆))
27 simpr2 1028 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝐴)
286adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆))
2927, 28eleqtrd 2308 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆))
30 simpr3 1029 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ 𝐴)
3130, 28eleqtrd 2308 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ (Base‘𝑆))
3223, 24, 25, 26, 29, 31dvdsrmuld 14068 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
33 subrgrcl 14198 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
34 simpr1 1027 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑈)
35 eqid 2229 . . . . . . 7 (.r𝑅) = (.r𝑅)
36 eqid 2229 . . . . . . 7 (1r𝑅) = (1r𝑅)
372, 19, 35, 36unitlinv 14098 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
3833, 34, 37syl2an2r 597 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
391, 35ressmulrg 13186 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
4033, 39mpdan 421 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
4140adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑅) = (.r𝑆))
4241oveqd 6024 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = ((𝐼𝑋)(.r𝑆)𝑋))
431, 36subrg1 14203 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4443adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (1r𝑅) = (1r𝑆))
4538, 42, 443eqtr3d 2270 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑆)𝑋) = (1r𝑆))
4632, 45breqtrd 4109 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)(1r𝑆))
479adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑆 ∈ Ring)
48 eqid 2229 . . . . . . 7 (oppr𝑆) = (oppr𝑆)
4948, 16opprbasg 14046 . . . . . 6 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
5047, 49syl 14 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (Base‘𝑆) = (Base‘(oppr𝑆)))
51 eqidd 2230 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
5248opprring 14050 . . . . . 6 (𝑆 ∈ Ring → (oppr𝑆) ∈ Ring)
53 ringsrg 14018 . . . . . 6 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ SRing)
5447, 52, 533syl 17 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (oppr𝑆) ∈ SRing)
55 eqidd 2230 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r‘(oppr𝑆)) = (.r‘(oppr𝑆)))
5650, 51, 54, 55, 29, 31dvdsrmuld 14068 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
57 eqid 2229 . . . . . . 7 (.r𝑆) = (.r𝑆)
58 eqid 2229 . . . . . . 7 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
5916, 57, 48, 58opprmulg 14042 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐼𝑋) ∈ (Base‘𝑆) ∧ 𝑋 ∈ (Base‘𝑆)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋)))
6047, 31, 29, 59syl3anc 1271 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋)))
612, 19, 35, 36unitrinv 14099 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
6233, 34, 61syl2an2r 597 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
6341oveqd 6024 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (𝑋(.r𝑆)(𝐼𝑋)))
6462, 63, 443eqtr3d 2270 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑆)(𝐼𝑋)) = (1r𝑆))
6560, 64eqtrd 2262 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (1r𝑆))
6656, 65breqtrd 4109 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))(1r𝑆))
673a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
68 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
69 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
70 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
71 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7267, 68, 69, 70, 71, 11isunitd 14078 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆))))
7372adantr 276 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆))))
7446, 66, 73mpbir2and 950 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑉)
7522, 74impbida 598 1 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  .rcmulr 13119  1rcur 13930  SRingcsrg 13934  Ringcrg 13967  opprcoppr 14038  rcdsr 14057  Unitcui 14058  invrcinvr 14092  SubRingcsubrg 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-tpos 6397  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-invr 14093  df-subrg 14191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator