ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgunit GIF version

Theorem subrgunit 14045
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgunit.4 𝐼 = (invr𝑅)
Assertion
Ref Expression
subrgunit (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . . 5 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . . 5 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 14042 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
54sselda 3194 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑈)
61subrgbas 14036 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
76adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝐴 = (Base‘𝑆))
83a1i 9 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑉 = (Unit‘𝑆))
91subrgring 14030 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
10 ringsrg 13853 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
119, 10syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
1211adantr 276 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑆 ∈ SRing)
13 simpr 110 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑉)
147, 8, 12, 13unitcld 13914 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝐴)
15 eqid 2206 . . . . . 6 (invr𝑆) = (invr𝑆)
16 eqid 2206 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
173, 15, 16ringinvcl 13931 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
189, 17sylan 283 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
19 subrgunit.4 . . . . 5 𝐼 = (invr𝑅)
201, 19, 3, 15subrginv 14043 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) = ((invr𝑆)‘𝑋))
2118, 20, 73eltr4d 2290 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝐴)
225, 14, 213jca 1180 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴))
23 eqidd 2207 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (Base‘𝑆) = (Base‘𝑆))
24 eqidd 2207 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (∥r𝑆) = (∥r𝑆))
2511adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑆 ∈ SRing)
26 eqidd 2207 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑆) = (.r𝑆))
27 simpr2 1007 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝐴)
286adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆))
2927, 28eleqtrd 2285 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆))
30 simpr3 1008 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ 𝐴)
3130, 28eleqtrd 2285 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ (Base‘𝑆))
3223, 24, 25, 26, 29, 31dvdsrmuld 13902 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
33 subrgrcl 14032 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
34 simpr1 1006 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑈)
35 eqid 2206 . . . . . . 7 (.r𝑅) = (.r𝑅)
36 eqid 2206 . . . . . . 7 (1r𝑅) = (1r𝑅)
372, 19, 35, 36unitlinv 13932 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
3833, 34, 37syl2an2r 595 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
391, 35ressmulrg 13021 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
4033, 39mpdan 421 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
4140adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑅) = (.r𝑆))
4241oveqd 5968 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = ((𝐼𝑋)(.r𝑆)𝑋))
431, 36subrg1 14037 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4443adantr 276 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (1r𝑅) = (1r𝑆))
4538, 42, 443eqtr3d 2247 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑆)𝑋) = (1r𝑆))
4632, 45breqtrd 4073 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)(1r𝑆))
479adantr 276 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑆 ∈ Ring)
48 eqid 2206 . . . . . . 7 (oppr𝑆) = (oppr𝑆)
4948, 16opprbasg 13881 . . . . . 6 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(oppr𝑆)))
5047, 49syl 14 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (Base‘𝑆) = (Base‘(oppr𝑆)))
51 eqidd 2207 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
5248opprring 13885 . . . . . 6 (𝑆 ∈ Ring → (oppr𝑆) ∈ Ring)
53 ringsrg 13853 . . . . . 6 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ SRing)
5447, 52, 533syl 17 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (oppr𝑆) ∈ SRing)
55 eqidd 2207 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r‘(oppr𝑆)) = (.r‘(oppr𝑆)))
5650, 51, 54, 55, 29, 31dvdsrmuld 13902 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
57 eqid 2206 . . . . . . 7 (.r𝑆) = (.r𝑆)
58 eqid 2206 . . . . . . 7 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
5916, 57, 48, 58opprmulg 13877 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐼𝑋) ∈ (Base‘𝑆) ∧ 𝑋 ∈ (Base‘𝑆)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋)))
6047, 31, 29, 59syl3anc 1250 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋)))
612, 19, 35, 36unitrinv 13933 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
6233, 34, 61syl2an2r 595 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
6341oveqd 5968 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (𝑋(.r𝑆)(𝐼𝑋)))
6462, 63, 443eqtr3d 2247 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑆)(𝐼𝑋)) = (1r𝑆))
6560, 64eqtrd 2239 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (1r𝑆))
6656, 65breqtrd 4073 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))(1r𝑆))
673a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 = (Unit‘𝑆))
68 eqidd 2207 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑆))
69 eqidd 2207 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) = (∥r𝑆))
70 eqidd 2207 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (oppr𝑆) = (oppr𝑆))
71 eqidd 2207 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
7267, 68, 69, 70, 71, 11isunitd 13912 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆))))
7372adantr 276 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆))))
7446, 66, 73mpbir2and 947 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑉)
7522, 74impbida 596 1 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  cfv 5276  (class class class)co 5951  Basecbs 12876  s cress 12877  .rcmulr 12954  1rcur 13765  SRingcsrg 13769  Ringcrg 13802  opprcoppr 13873  rcdsr 13892  Unitcui 13893  invrcinvr 13926  SubRingcsubrg 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-tpos 6338  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-subg 13550  df-cmn 13666  df-abl 13667  df-mgp 13727  df-ur 13766  df-srg 13770  df-ring 13804  df-oppr 13874  df-dvdsr 13895  df-unit 13896  df-invr 13927  df-subrg 14025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator