ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgcl GIF version

Theorem srgcl 13899
Description: Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b 𝐵 = (Base‘𝑅)
srgcl.t · = (.r𝑅)
Assertion
Ref Expression
srgcl ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem srgcl
StepHypRef Expression
1 eqid 2209 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21srgmgp 13897 . . . 4 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
323ad2ant1 1023 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ Mnd)
4 simp2 1003 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 srgcl.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13855 . . . . 5 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
763ad2ant1 1023 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2288 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simp3 1004 . . . 4 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
109, 7eleqtrd 2288 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 eqid 2209 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
12 eqid 2209 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1311, 12mndcl 13422 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
143, 8, 10, 13syl3anc 1252 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
15 srgcl.t . . . . 5 · = (.r𝑅)
161, 15mgpplusgg 13853 . . . 4 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
17163ad2ant1 1023 . . 3 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → · = (+g‘(mulGrp‘𝑅)))
1817oveqd 5991 . 2 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
1914, 18, 73eltr4d 2293 1 ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 983   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  Mndcmnd 13415  mulGrpcmgp 13849  SRingcsrg 13892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mgp 13850  df-srg 13893
This theorem is referenced by:  srgfcl  13902  srgmulgass  13918  srgpcomppsc  13921  srglmhm  13922  srgrmhm  13923  reldvdsrsrg  14021  dvdsrvald  14022  dvdsrd  14023  dvdsrex  14027
  Copyright terms: Public domain W3C validator