![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvrvald | GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrvald.b | β’ (π β π΅ = (Baseβπ )) |
dvrvald.t | β’ (π β Β· = (.rβπ )) |
dvrvald.u | β’ (π β π = (Unitβπ )) |
dvrvald.i | β’ (π β πΌ = (invrβπ )) |
dvrvald.d | β’ (π β / = (/rβπ )) |
dvrvald.r | β’ (π β π β Ring) |
dvrvald.x | β’ (π β π β π΅) |
dvrvald.y | β’ (π β π β π) |
Ref | Expression |
---|---|
dvrvald | β’ (π β (π / π) = (π Β· (πΌβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrvald.b | . . 3 β’ (π β π΅ = (Baseβπ )) | |
2 | dvrvald.t | . . 3 β’ (π β Β· = (.rβπ )) | |
3 | dvrvald.u | . . 3 β’ (π β π = (Unitβπ )) | |
4 | dvrvald.i | . . 3 β’ (π β πΌ = (invrβπ )) | |
5 | dvrvald.d | . . 3 β’ (π β / = (/rβπ )) | |
6 | dvrvald.r | . . . 4 β’ (π β π β Ring) | |
7 | ringsrg 13262 | . . . 4 β’ (π β Ring β π β SRing) | |
8 | 6, 7 | syl 14 | . . 3 β’ (π β π β SRing) |
9 | 1, 2, 3, 4, 5, 8 | dvrfvald 13340 | . 2 β’ (π β / = (π₯ β π΅, π¦ β π β¦ (π₯ Β· (πΌβπ¦)))) |
10 | simpl 109 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β π₯ = π) | |
11 | fveq2 5517 | . . . . 5 β’ (π¦ = π β (πΌβπ¦) = (πΌβπ)) | |
12 | 11 | adantl 277 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β (πΌβπ¦) = (πΌβπ)) |
13 | 10, 12 | oveq12d 5896 | . . 3 β’ ((π₯ = π β§ π¦ = π) β (π₯ Β· (πΌβπ¦)) = (π Β· (πΌβπ))) |
14 | 13 | adantl 277 | . 2 β’ ((π β§ (π₯ = π β§ π¦ = π)) β (π₯ Β· (πΌβπ¦)) = (π Β· (πΌβπ))) |
15 | dvrvald.x | . 2 β’ (π β π β π΅) | |
16 | dvrvald.y | . 2 β’ (π β π β π) | |
17 | 2 | oveqd 5895 | . . 3 β’ (π β (π Β· (πΌβπ)) = (π(.rβπ )(πΌβπ))) |
18 | 15, 1 | eleqtrd 2256 | . . . 4 β’ (π β π β (Baseβπ )) |
19 | eqidd 2178 | . . . . 5 β’ (π β (Baseβπ ) = (Baseβπ )) | |
20 | 16, 3 | eleqtrd 2256 | . . . . . . 7 β’ (π β π β (Unitβπ )) |
21 | eqid 2177 | . . . . . . . 8 β’ (Unitβπ ) = (Unitβπ ) | |
22 | eqid 2177 | . . . . . . . 8 β’ (invrβπ ) = (invrβπ ) | |
23 | 21, 22 | unitinvcl 13330 | . . . . . . 7 β’ ((π β Ring β§ π β (Unitβπ )) β ((invrβπ )βπ) β (Unitβπ )) |
24 | 6, 20, 23 | syl2anc 411 | . . . . . 6 β’ (π β ((invrβπ )βπ) β (Unitβπ )) |
25 | 4 | fveq1d 5519 | . . . . . 6 β’ (π β (πΌβπ) = ((invrβπ )βπ)) |
26 | 24, 25, 3 | 3eltr4d 2261 | . . . . 5 β’ (π β (πΌβπ) β π) |
27 | 19, 3, 8, 26 | unitcld 13315 | . . . 4 β’ (π β (πΌβπ) β (Baseβπ )) |
28 | eqid 2177 | . . . . 5 β’ (Baseβπ ) = (Baseβπ ) | |
29 | eqid 2177 | . . . . 5 β’ (.rβπ ) = (.rβπ ) | |
30 | 28, 29 | ringcl 13234 | . . . 4 β’ ((π β Ring β§ π β (Baseβπ ) β§ (πΌβπ) β (Baseβπ )) β (π(.rβπ )(πΌβπ)) β (Baseβπ )) |
31 | 6, 18, 27, 30 | syl3anc 1238 | . . 3 β’ (π β (π(.rβπ )(πΌβπ)) β (Baseβπ )) |
32 | 17, 31 | eqeltrd 2254 | . 2 β’ (π β (π Β· (πΌβπ)) β (Baseβπ )) |
33 | 9, 14, 15, 16, 32 | ovmpod 6005 | 1 β’ (π β (π / π) = (π Β· (πΌβπ))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 βcfv 5218 (class class class)co 5878 Basecbs 12465 .rcmulr 12540 SRingcsrg 13184 Ringcrg 13217 Unitcui 13294 invrcinvr 13327 /rcdvr 13338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-tpos 6249 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12782 df-sgrp 12815 df-mnd 12826 df-grp 12888 df-minusg 12889 df-cmn 13105 df-abl 13106 df-mgp 13147 df-ur 13181 df-srg 13185 df-ring 13219 df-oppr 13278 df-dvdsr 13296 df-unit 13297 df-invr 13328 df-dvr 13339 |
This theorem is referenced by: dvrcl 13342 unitdvcl 13343 dvrid 13344 dvr1 13345 dvrass 13346 dvrcan1 13347 dvrdir 13350 rdivmuldivd 13351 ringinvdv 13352 subrgdv 13397 |
Copyright terms: Public domain | W3C validator |