ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrvald GIF version

Theorem dvrvald 13766
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrvald.b (𝜑𝐵 = (Base‘𝑅))
dvrvald.t (𝜑· = (.r𝑅))
dvrvald.u (𝜑𝑈 = (Unit‘𝑅))
dvrvald.i (𝜑𝐼 = (invr𝑅))
dvrvald.d (𝜑/ = (/r𝑅))
dvrvald.r (𝜑𝑅 ∈ Ring)
dvrvald.x (𝜑𝑋𝐵)
dvrvald.y (𝜑𝑌𝑈)
Assertion
Ref Expression
dvrvald (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))

Proof of Theorem dvrvald
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvrvald.b . . 3 (𝜑𝐵 = (Base‘𝑅))
2 dvrvald.t . . 3 (𝜑· = (.r𝑅))
3 dvrvald.u . . 3 (𝜑𝑈 = (Unit‘𝑅))
4 dvrvald.i . . 3 (𝜑𝐼 = (invr𝑅))
5 dvrvald.d . . 3 (𝜑/ = (/r𝑅))
6 dvrvald.r . . . 4 (𝜑𝑅 ∈ Ring)
7 ringsrg 13679 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
86, 7syl 14 . . 3 (𝜑𝑅 ∈ SRing)
91, 2, 3, 4, 5, 8dvrfvald 13765 . 2 (𝜑/ = (𝑥𝐵, 𝑦𝑈 ↦ (𝑥 · (𝐼𝑦))))
10 simpl 109 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
11 fveq2 5561 . . . . 5 (𝑦 = 𝑌 → (𝐼𝑦) = (𝐼𝑌))
1211adantl 277 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐼𝑦) = (𝐼𝑌))
1310, 12oveq12d 5943 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 · (𝐼𝑦)) = (𝑋 · (𝐼𝑌)))
1413adantl 277 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥 · (𝐼𝑦)) = (𝑋 · (𝐼𝑌)))
15 dvrvald.x . 2 (𝜑𝑋𝐵)
16 dvrvald.y . 2 (𝜑𝑌𝑈)
172oveqd 5942 . . 3 (𝜑 → (𝑋 · (𝐼𝑌)) = (𝑋(.r𝑅)(𝐼𝑌)))
1815, 1eleqtrd 2275 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
19 eqidd 2197 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
2016, 3eleqtrd 2275 . . . . . . 7 (𝜑𝑌 ∈ (Unit‘𝑅))
21 eqid 2196 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
22 eqid 2196 . . . . . . . 8 (invr𝑅) = (invr𝑅)
2321, 22unitinvcl 13755 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑌) ∈ (Unit‘𝑅))
246, 20, 23syl2anc 411 . . . . . 6 (𝜑 → ((invr𝑅)‘𝑌) ∈ (Unit‘𝑅))
254fveq1d 5563 . . . . . 6 (𝜑 → (𝐼𝑌) = ((invr𝑅)‘𝑌))
2624, 25, 33eltr4d 2280 . . . . 5 (𝜑 → (𝐼𝑌) ∈ 𝑈)
2719, 3, 8, 26unitcld 13740 . . . 4 (𝜑 → (𝐼𝑌) ∈ (Base‘𝑅))
28 eqid 2196 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
29 eqid 2196 . . . . 5 (.r𝑅) = (.r𝑅)
3028, 29ringcl 13645 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼𝑌) ∈ (Base‘𝑅)) → (𝑋(.r𝑅)(𝐼𝑌)) ∈ (Base‘𝑅))
316, 18, 27, 30syl3anc 1249 . . 3 (𝜑 → (𝑋(.r𝑅)(𝐼𝑌)) ∈ (Base‘𝑅))
3217, 31eqeltrd 2273 . 2 (𝜑 → (𝑋 · (𝐼𝑌)) ∈ (Base‘𝑅))
339, 14, 15, 16, 32ovmpod 6054 1 (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  .rcmulr 12781  SRingcsrg 13595  Ringcrg 13628  Unitcui 13719  invrcinvr 13752  /rcdvr 13763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-dvr 13764
This theorem is referenced by:  dvrcl  13767  unitdvcl  13768  dvrid  13769  dvr1  13770  dvrass  13771  dvrcan1  13772  dvrdir  13775  rdivmuldivd  13776  ringinvdv  13777  subrgdv  13870
  Copyright terms: Public domain W3C validator