![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvrvald | GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
dvrvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
dvrvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
dvrvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
dvrvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) |
dvrvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
dvrvald.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dvrvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
dvrvald | ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | dvrvald.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
3 | dvrvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
4 | dvrvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
5 | dvrvald.d | . . 3 ⊢ (𝜑 → / = (/r‘𝑅)) | |
6 | dvrvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | ringsrg 13546 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) |
9 | 1, 2, 3, 4, 5, 8 | dvrfvald 13632 | . 2 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
10 | simpl 109 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
11 | fveq2 5555 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐼‘𝑦) = (𝐼‘𝑌)) |
13 | 10, 12 | oveq12d 5937 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
14 | 13 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
15 | dvrvald.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
16 | dvrvald.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
17 | 2 | oveqd 5936 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) = (𝑋(.r‘𝑅)(𝐼‘𝑌))) |
18 | 15, 1 | eleqtrd 2272 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
19 | eqidd 2194 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
20 | 16, 3 | eleqtrd 2272 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Unit‘𝑅)) |
21 | eqid 2193 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
22 | eqid 2193 | . . . . . . . 8 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
23 | 21, 22 | unitinvcl 13622 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) |
24 | 6, 20, 23 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) |
25 | 4 | fveq1d 5557 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) = ((invr‘𝑅)‘𝑌)) |
26 | 24, 25, 3 | 3eltr4d 2277 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝑈) |
27 | 19, 3, 8, 26 | unitcld 13607 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (Base‘𝑅)) |
28 | eqid 2193 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
29 | eqid 2193 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
30 | 28, 29 | ringcl 13512 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼‘𝑌) ∈ (Base‘𝑅)) → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) |
31 | 6, 18, 27, 30 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) |
32 | 17, 31 | eqeltrd 2270 | . 2 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) ∈ (Base‘𝑅)) |
33 | 9, 14, 15, 16, 32 | ovmpod 6047 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 .rcmulr 12699 SRingcsrg 13462 Ringcrg 13495 Unitcui 13586 invrcinvr 13619 /rcdvr 13630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-oppr 13567 df-dvdsr 13588 df-unit 13589 df-invr 13620 df-dvr 13631 |
This theorem is referenced by: dvrcl 13634 unitdvcl 13635 dvrid 13636 dvr1 13637 dvrass 13638 dvrcan1 13639 dvrdir 13642 rdivmuldivd 13643 ringinvdv 13644 subrgdv 13737 |
Copyright terms: Public domain | W3C validator |