| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvrvald | GIF version | ||
| Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| dvrvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| dvrvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) | 
| dvrvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | 
| dvrvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | 
| dvrvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) | 
| dvrvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| dvrvald.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| dvrvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) | 
| Ref | Expression | 
|---|---|
| dvrvald | ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvrvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | dvrvald.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 3 | dvrvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 4 | dvrvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 5 | dvrvald.d | . . 3 ⊢ (𝜑 → / = (/r‘𝑅)) | |
| 6 | dvrvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | ringsrg 13603 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | 
| 9 | 1, 2, 3, 4, 5, 8 | dvrfvald 13689 | . 2 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) | 
| 10 | simpl 109 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | fveq2 5558 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐼‘𝑦) = (𝐼‘𝑌)) | 
| 13 | 10, 12 | oveq12d 5940 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) | 
| 14 | 13 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) | 
| 15 | dvrvald.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | dvrvald.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 17 | 2 | oveqd 5939 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) = (𝑋(.r‘𝑅)(𝐼‘𝑌))) | 
| 18 | 15, 1 | eleqtrd 2275 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | 
| 19 | eqidd 2197 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
| 20 | 16, 3 | eleqtrd 2275 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Unit‘𝑅)) | 
| 21 | eqid 2196 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 22 | eqid 2196 | . . . . . . . 8 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 21, 22 | unitinvcl 13679 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) | 
| 24 | 6, 20, 23 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) | 
| 25 | 4 | fveq1d 5560 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) = ((invr‘𝑅)‘𝑌)) | 
| 26 | 24, 25, 3 | 3eltr4d 2280 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝑈) | 
| 27 | 19, 3, 8, 26 | unitcld 13664 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (Base‘𝑅)) | 
| 28 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 29 | eqid 2196 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 30 | 28, 29 | ringcl 13569 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼‘𝑌) ∈ (Base‘𝑅)) → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) | 
| 31 | 6, 18, 27, 30 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) | 
| 32 | 17, 31 | eqeltrd 2273 | . 2 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) ∈ (Base‘𝑅)) | 
| 33 | 9, 14, 15, 16, 32 | ovmpod 6050 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 SRingcsrg 13519 Ringcrg 13552 Unitcui 13643 invrcinvr 13676 /rcdvr 13687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-oppr 13624 df-dvdsr 13645 df-unit 13646 df-invr 13677 df-dvr 13688 | 
| This theorem is referenced by: dvrcl 13691 unitdvcl 13692 dvrid 13693 dvr1 13694 dvrass 13695 dvrcan1 13696 dvrdir 13699 rdivmuldivd 13700 ringinvdv 13701 subrgdv 13794 | 
| Copyright terms: Public domain | W3C validator |