| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrvald | GIF version | ||
| Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvrvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvrvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvrvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| dvrvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
| dvrvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) |
| dvrvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| dvrvald.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvrvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| dvrvald | ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | dvrvald.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 3 | dvrvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 4 | dvrvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 5 | dvrvald.d | . . 3 ⊢ (𝜑 → / = (/r‘𝑅)) | |
| 6 | dvrvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | ringsrg 14005 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) |
| 9 | 1, 2, 3, 4, 5, 8 | dvrfvald 14091 | . 2 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| 10 | simpl 109 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | fveq2 5626 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐼‘𝑦) = (𝐼‘𝑌)) |
| 13 | 10, 12 | oveq12d 6018 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
| 14 | 13 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
| 15 | dvrvald.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | dvrvald.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 17 | 2 | oveqd 6017 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) = (𝑋(.r‘𝑅)(𝐼‘𝑌))) |
| 18 | 15, 1 | eleqtrd 2308 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 19 | eqidd 2230 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
| 20 | 16, 3 | eleqtrd 2308 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Unit‘𝑅)) |
| 21 | eqid 2229 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 22 | eqid 2229 | . . . . . . . 8 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 21, 22 | unitinvcl 14081 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) |
| 24 | 6, 20, 23 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) |
| 25 | 4 | fveq1d 5628 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) = ((invr‘𝑅)‘𝑌)) |
| 26 | 24, 25, 3 | 3eltr4d 2313 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝑈) |
| 27 | 19, 3, 8, 26 | unitcld 14066 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (Base‘𝑅)) |
| 28 | eqid 2229 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 29 | eqid 2229 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 30 | 28, 29 | ringcl 13971 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼‘𝑌) ∈ (Base‘𝑅)) → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) |
| 31 | 6, 18, 27, 30 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) |
| 32 | 17, 31 | eqeltrd 2306 | . 2 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) ∈ (Base‘𝑅)) |
| 33 | 9, 14, 15, 16, 32 | ovmpod 6131 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 .rcmulr 13106 SRingcsrg 13921 Ringcrg 13954 Unitcui 14045 invrcinvr 14078 /rcdvr 14089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-tpos 6389 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-cmn 13818 df-abl 13819 df-mgp 13879 df-ur 13918 df-srg 13922 df-ring 13956 df-oppr 14026 df-dvdsr 14047 df-unit 14048 df-invr 14079 df-dvr 14090 |
| This theorem is referenced by: dvrcl 14093 unitdvcl 14094 dvrid 14095 dvr1 14096 dvrass 14097 dvrcan1 14098 dvrdir 14101 rdivmuldivd 14102 ringinvdv 14103 subrgdv 14196 |
| Copyright terms: Public domain | W3C validator |