| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrvald | GIF version | ||
| Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvrvald.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvrvald.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvrvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| dvrvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
| dvrvald.d | ⊢ (𝜑 → / = (/r‘𝑅)) |
| dvrvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| dvrvald.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvrvald.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| dvrvald | ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrvald.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | dvrvald.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 3 | dvrvald.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 4 | dvrvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 5 | dvrvald.d | . . 3 ⊢ (𝜑 → / = (/r‘𝑅)) | |
| 6 | dvrvald.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 7 | ringsrg 13884 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) |
| 9 | 1, 2, 3, 4, 5, 8 | dvrfvald 13970 | . 2 ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) |
| 10 | simpl 109 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | fveq2 5589 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐼‘𝑦) = (𝐼‘𝑌)) |
| 13 | 10, 12 | oveq12d 5975 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
| 14 | 13 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
| 15 | dvrvald.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | dvrvald.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 17 | 2 | oveqd 5974 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) = (𝑋(.r‘𝑅)(𝐼‘𝑌))) |
| 18 | 15, 1 | eleqtrd 2285 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 19 | eqidd 2207 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
| 20 | 16, 3 | eleqtrd 2285 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Unit‘𝑅)) |
| 21 | eqid 2206 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 22 | eqid 2206 | . . . . . . . 8 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 23 | 21, 22 | unitinvcl 13960 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) |
| 24 | 6, 20, 23 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → ((invr‘𝑅)‘𝑌) ∈ (Unit‘𝑅)) |
| 25 | 4 | fveq1d 5591 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) = ((invr‘𝑅)‘𝑌)) |
| 26 | 24, 25, 3 | 3eltr4d 2290 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ∈ 𝑈) |
| 27 | 19, 3, 8, 26 | unitcld 13945 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑌) ∈ (Base‘𝑅)) |
| 28 | eqid 2206 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 29 | eqid 2206 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 30 | 28, 29 | ringcl 13850 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝐼‘𝑌) ∈ (Base‘𝑅)) → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) |
| 31 | 6, 18, 27, 30 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝑋(.r‘𝑅)(𝐼‘𝑌)) ∈ (Base‘𝑅)) |
| 32 | 17, 31 | eqeltrd 2283 | . 2 ⊢ (𝜑 → (𝑋 · (𝐼‘𝑌)) ∈ (Base‘𝑅)) |
| 33 | 9, 14, 15, 16, 32 | ovmpod 6086 | 1 ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 .rcmulr 12985 SRingcsrg 13800 Ringcrg 13833 Unitcui 13924 invrcinvr 13957 /rcdvr 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-cmn 13697 df-abl 13698 df-mgp 13758 df-ur 13797 df-srg 13801 df-ring 13835 df-oppr 13905 df-dvdsr 13926 df-unit 13927 df-invr 13958 df-dvr 13969 |
| This theorem is referenced by: dvrcl 13972 unitdvcl 13973 dvrid 13974 dvr1 13975 dvrass 13976 dvrcan1 13977 dvrdir 13980 rdivmuldivd 13981 ringinvdv 13982 subrgdv 14075 |
| Copyright terms: Public domain | W3C validator |