Step | Hyp | Ref
| Expression |
1 | | sgrpmgm 12885 |
. . . . . 6
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) |
2 | | mulgnndir.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
3 | | mulgnndir.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
4 | 2, 3 | mgmcl 12838 |
. . . . . 6
⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1282 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
6 | 5 | 3expb 1206 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
7 | 6 | adantlr 477 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
8 | 2, 3 | sgrpass 12886 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | 8 | adantlr 477 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | | simpr2 1006 |
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℕ) |
11 | | nnuz 9595 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
12 | 10, 11 | eleqtrdi 2282 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈
(ℤ≥‘1)) |
13 | | simpr1 1005 |
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℕ) |
14 | 13 | nnzd 9405 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) |
15 | | eluzadd 9588 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) |
16 | 12, 14, 15 | syl2anc 411 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) |
17 | 13 | nncnd 8964 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) |
18 | 10 | nncnd 8964 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) |
19 | 17, 18 | addcomd 8139 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
20 | | ax-1cn 7935 |
. . . . . 6
⊢ 1 ∈
ℂ |
21 | | addcom 8125 |
. . . . . 6
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 + 1) =
(1 + 𝑀)) |
22 | 17, 20, 21 | sylancl 413 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 1) = (1 + 𝑀)) |
23 | 22 | fveq2d 5538 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) →
(ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(1 +
𝑀))) |
24 | 16, 19, 23 | 3eltr4d 2273 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 1))) |
25 | 13, 11 | eleqtrdi 2282 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈
(ℤ≥‘1)) |
26 | | simpr3 1007 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
27 | 11, 26 | ialgrlemconst 12078 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝑋})‘𝑥) ∈ 𝐵) |
28 | 7, 9, 24, 25, 27 | seq3split 10512 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) |
29 | 13, 10 | nnaddcld 8998 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈ ℕ) |
30 | | mulgnndir.t |
. . . 4
⊢ · =
(.g‘𝐺) |
31 | | eqid 2189 |
. . . 4
⊢ seq1(
+ ,
(ℕ × {𝑋})) =
seq1( + ,
(ℕ × {𝑋})) |
32 | 2, 3, 30, 31 | mulgnn 13083 |
. . 3
⊢ (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
33 | 29, 26, 32 | syl2anc 411 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
34 | 2, 3, 30, 31 | mulgnn 13083 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
35 | 13, 26, 34 | syl2anc 411 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) |
36 | | elfznn 10086 |
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) |
37 | | fvconst2g 5751 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑥) = 𝑋) |
38 | 26, 36, 37 | syl2an 289 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
39 | | nnaddcl 8970 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ) |
40 | 36, 13, 39 | syl2anr 290 |
. . . . . . 7
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ) |
41 | | fvconst2g 5751 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ ×
{𝑋})‘(𝑥 + 𝑀)) = 𝑋) |
42 | 26, 40, 41 | syl2an2r 595 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋) |
43 | 38, 42 | eqtr4d 2225 |
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀))) |
44 | | elnnuz 9596 |
. . . . . . 7
⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈
(ℤ≥‘1)) |
45 | 44 | biimpri 133 |
. . . . . 6
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℕ) |
46 | | fvconst2g 5751 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) = 𝑋) |
47 | | simpl 109 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) |
48 | 46, 47 | eqeltrd 2266 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ 𝐵) |
49 | 48 | elexd 2765 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ V) |
50 | 26, 45, 49 | syl2an 289 |
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((ℕ × {𝑋})‘𝑢) ∈ V) |
51 | | 1nn 8961 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
52 | 51 | a1i 9 |
. . . . . . . 8
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → 1 ∈
ℕ) |
53 | 13 | adantr 276 |
. . . . . . . 8
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → 𝑀 ∈
ℕ) |
54 | 52, 53 | nnaddcld 8998 |
. . . . . . 7
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → (1 + 𝑀) ∈
ℕ) |
55 | | eluznn 9632 |
. . . . . . 7
⊢ (((1 +
𝑀) ∈ ℕ ∧
𝑢 ∈
(ℤ≥‘(1 + 𝑀))) → 𝑢 ∈ ℕ) |
56 | 54, 55 | sylancom 420 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → 𝑢 ∈
ℕ) |
57 | 26, 56, 49 | syl2an2r 595 |
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → ((ℕ
× {𝑋})‘𝑢) ∈ V) |
58 | | simprl 529 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) |
59 | | plusgslid 12627 |
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
60 | 59 | slotex 12542 |
. . . . . . . 8
⊢ (𝐺 ∈ Smgrp →
(+g‘𝐺)
∈ V) |
61 | 3, 60 | eqeltrid 2276 |
. . . . . . 7
⊢ (𝐺 ∈ Smgrp → + ∈
V) |
62 | 61 | ad2antrr 488 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V) |
63 | | simprr 531 |
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) |
64 | | ovexg 5931 |
. . . . . 6
⊢ ((𝑢 ∈ V ∧ + ∈ V
∧ 𝑣 ∈ V) →
(𝑢 + 𝑣) ∈ V) |
65 | 58, 62, 63, 64 | syl3anc 1249 |
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V) |
66 | 12, 14, 43, 50, 57, 65 | seq3shft2 10506 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) |
67 | 2, 3, 30, 31 | mulgnn 13083 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
68 | 10, 26, 67 | syl2anc 411 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
69 | 22 | seqeq1d 10484 |
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋}))) |
70 | 69, 19 | fveq12d 5541 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) |
71 | 66, 68, 70 | 3eqtr4d 2232 |
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) |
72 | 35, 71 | oveq12d 5915 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) |
73 | 28, 33, 72 | 3eqtr4d 2232 |
1
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |