| Step | Hyp | Ref
 | Expression | 
| 1 |   | sgrpmgm 13050 | 
. . . . . 6
⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) | 
| 2 |   | mulgnndir.b | 
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) | 
| 3 |   | mulgnndir.p | 
. . . . . . 7
⊢  + =
(+g‘𝐺) | 
| 4 | 2, 3 | mgmcl 13002 | 
. . . . . 6
⊢ ((𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 5 | 1, 4 | syl3an1 1282 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 6 | 5 | 3expb 1206 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 7 | 6 | adantlr 477 | 
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 8 | 2, 3 | sgrpass 13051 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 9 | 8 | adantlr 477 | 
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 10 |   | simpr2 1006 | 
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℕ) | 
| 11 |   | nnuz 9637 | 
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) | 
| 12 | 10, 11 | eleqtrdi 2289 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈
(ℤ≥‘1)) | 
| 13 |   | simpr1 1005 | 
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℕ) | 
| 14 | 13 | nnzd 9447 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) | 
| 15 |   | eluzadd 9630 | 
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) | 
| 16 | 12, 14, 15 | syl2anc 411 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 + 𝑀) ∈ (ℤ≥‘(1 +
𝑀))) | 
| 17 | 13 | nncnd 9004 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) | 
| 18 | 10 | nncnd 9004 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) | 
| 19 | 17, 18 | addcomd 8177 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀)) | 
| 20 |   | ax-1cn 7972 | 
. . . . . 6
⊢ 1 ∈
ℂ | 
| 21 |   | addcom 8163 | 
. . . . . 6
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 + 1) =
(1 + 𝑀)) | 
| 22 | 17, 20, 21 | sylancl 413 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 1) = (1 + 𝑀)) | 
| 23 | 22 | fveq2d 5562 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) →
(ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(1 +
𝑀))) | 
| 24 | 16, 19, 23 | 3eltr4d 2280 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 25 | 13, 11 | eleqtrdi 2289 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈
(ℤ≥‘1)) | 
| 26 |   | simpr3 1007 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 27 | 11, 26 | ialgrlemconst 12211 | 
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (ℤ≥‘1))
→ ((ℕ × {𝑋})‘𝑥) ∈ 𝐵) | 
| 28 | 7, 9, 24, 25, 27 | seq3split 10580 | 
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) | 
| 29 | 13, 10 | nnaddcld 9038 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + 𝑁) ∈ ℕ) | 
| 30 |   | mulgnndir.t | 
. . . 4
⊢  · =
(.g‘𝐺) | 
| 31 |   | eqid 2196 | 
. . . 4
⊢ seq1(
+ ,
(ℕ × {𝑋})) =
seq1( + ,
(ℕ × {𝑋})) | 
| 32 | 2, 3, 30, 31 | mulgnn 13256 | 
. . 3
⊢ (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) | 
| 33 | 29, 26, 32 | syl2anc 411 | 
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) | 
| 34 | 2, 3, 30, 31 | mulgnn 13256 | 
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) | 
| 35 | 13, 26, 34 | syl2anc 411 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀)) | 
| 36 |   | elfznn 10129 | 
. . . . . . 7
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | 
| 37 |   | fvconst2g 5776 | 
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑥) = 𝑋) | 
| 38 | 26, 36, 37 | syl2an 289 | 
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋) | 
| 39 |   | nnaddcl 9010 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ) | 
| 40 | 36, 13, 39 | syl2anr 290 | 
. . . . . . 7
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ) | 
| 41 |   | fvconst2g 5776 | 
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ ×
{𝑋})‘(𝑥 + 𝑀)) = 𝑋) | 
| 42 | 26, 40, 41 | syl2an2r 595 | 
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋) | 
| 43 | 38, 42 | eqtr4d 2232 | 
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀))) | 
| 44 |   | elnnuz 9638 | 
. . . . . . 7
⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈
(ℤ≥‘1)) | 
| 45 | 44 | biimpri 133 | 
. . . . . 6
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℕ) | 
| 46 |   | fvconst2g 5776 | 
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) = 𝑋) | 
| 47 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → 𝑋 ∈ 𝐵) | 
| 48 | 46, 47 | eqeltrd 2273 | 
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ 𝐵) | 
| 49 | 48 | elexd 2776 | 
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑢 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑢) ∈ V) | 
| 50 | 26, 45, 49 | syl2an 289 | 
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((ℕ × {𝑋})‘𝑢) ∈ V) | 
| 51 |   | 1nn 9001 | 
. . . . . . . . 9
⊢ 1 ∈
ℕ | 
| 52 | 51 | a1i 9 | 
. . . . . . . 8
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → 1 ∈
ℕ) | 
| 53 | 13 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → 𝑀 ∈
ℕ) | 
| 54 | 52, 53 | nnaddcld 9038 | 
. . . . . . 7
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → (1 + 𝑀) ∈
ℕ) | 
| 55 |   | eluznn 9674 | 
. . . . . . 7
⊢ (((1 +
𝑀) ∈ ℕ ∧
𝑢 ∈
(ℤ≥‘(1 + 𝑀))) → 𝑢 ∈ ℕ) | 
| 56 | 54, 55 | sylancom 420 | 
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → 𝑢 ∈
ℕ) | 
| 57 | 26, 56, 49 | syl2an2r 595 | 
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ 𝑢 ∈ (ℤ≥‘(1 +
𝑀))) → ((ℕ
× {𝑋})‘𝑢) ∈ V) | 
| 58 |   | simprl 529 | 
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V) | 
| 59 |   | plusgslid 12790 | 
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 60 | 59 | slotex 12705 | 
. . . . . . . 8
⊢ (𝐺 ∈ Smgrp →
(+g‘𝐺)
∈ V) | 
| 61 | 3, 60 | eqeltrid 2283 | 
. . . . . . 7
⊢ (𝐺 ∈ Smgrp → + ∈
V) | 
| 62 | 61 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V) | 
| 63 |   | simprr 531 | 
. . . . . 6
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V) | 
| 64 |   | ovexg 5956 | 
. . . . . 6
⊢ ((𝑢 ∈ V ∧ + ∈ V
∧ 𝑣 ∈ V) →
(𝑢 + 𝑣) ∈ V) | 
| 65 | 58, 62, 63, 64 | syl3anc 1249 | 
. . . . 5
⊢ (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V) | 
| 66 | 12, 14, 43, 50, 57, 65 | seq3shft2 10573 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) | 
| 67 | 2, 3, 30, 31 | mulgnn 13256 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) | 
| 68 | 10, 26, 67 | syl2anc 411 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) | 
| 69 | 22 | seqeq1d 10545 | 
. . . . 5
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋}))) | 
| 70 | 69, 19 | fveq12d 5565 | 
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀))) | 
| 71 | 66, 68, 70 | 3eqtr4d 2239 | 
. . 3
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))) | 
| 72 | 35, 71 | oveq12d 5940 | 
. 2
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))) | 
| 73 | 28, 33, 72 | 3eqtr4d 2239 | 
1
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |