ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnndir GIF version

Theorem mulgnndir 13562
Description: Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnndir ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnndir
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpmgm 13314 . . . . . 6 (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm)
2 mulgnndir.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 mulgnndir.p . . . . . . 7 + = (+g𝐺)
42, 3mgmcl 13266 . . . . . 6 ((𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
51, 4syl3an1 1283 . . . . 5 ((𝐺 ∈ Smgrp ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653expb 1207 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
76adantlr 477 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
82, 3sgrpass 13315 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98adantlr 477 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10 simpr2 1007 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℕ)
11 nnuz 9704 . . . . . 6 ℕ = (ℤ‘1)
1210, 11eleqtrdi 2299 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ (ℤ‘1))
13 simpr1 1006 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℕ)
1413nnzd 9514 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
15 eluzadd 9697 . . . . 5 ((𝑁 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1612, 14, 15syl2anc 411 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 + 𝑀) ∈ (ℤ‘(1 + 𝑀)))
1713nncnd 9070 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
1810nncnd 9070 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
1917, 18addcomd 8243 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
20 ax-1cn 8038 . . . . . 6 1 ∈ ℂ
21 addcom 8229 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + 1) = (1 + 𝑀))
2217, 20, 21sylancl 413 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 1) = (1 + 𝑀))
2322fveq2d 5593 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (ℤ‘(𝑀 + 1)) = (ℤ‘(1 + 𝑀)))
2416, 19, 233eltr4d 2290 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝑀 + 1)))
2513, 11eleqtrdi 2299 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑀 ∈ (ℤ‘1))
26 simpr3 1008 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → 𝑋𝐵)
2711, 26ialgrlemconst 12440 . . 3 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝐵)
287, 9, 24, 25, 27seq3split 10655 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
2913, 10nnaddcld 9104 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℕ)
30 mulgnndir.t . . . 4 · = (.g𝐺)
31 eqid 2206 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
322, 3, 30, 31mulgnn 13537 . . 3 (((𝑀 + 𝑁) ∈ ℕ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
3329, 26, 32syl2anc 411 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
342, 3, 30, 31mulgnn 13537 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑋𝐵) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
3513, 26, 34syl2anc 411 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑀))
36 elfznn 10196 . . . . . . 7 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
37 fvconst2g 5811 . . . . . . 7 ((𝑋𝐵𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
3826, 36, 37syl2an 289 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
39 nnaddcl 9076 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑥 + 𝑀) ∈ ℕ)
4036, 13, 39syl2anr 290 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 + 𝑀) ∈ ℕ)
41 fvconst2g 5811 . . . . . . 7 ((𝑋𝐵 ∧ (𝑥 + 𝑀) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4226, 40, 41syl2an2r 595 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘(𝑥 + 𝑀)) = 𝑋)
4338, 42eqtr4d 2242 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = ((ℕ × {𝑋})‘(𝑥 + 𝑀)))
44 elnnuz 9705 . . . . . . 7 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
4544biimpri 133 . . . . . 6 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
46 fvconst2g 5811 . . . . . . . 8 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) = 𝑋)
47 simpl 109 . . . . . . . 8 ((𝑋𝐵𝑢 ∈ ℕ) → 𝑋𝐵)
4846, 47eqeltrd 2283 . . . . . . 7 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ 𝐵)
4948elexd 2787 . . . . . 6 ((𝑋𝐵𝑢 ∈ ℕ) → ((ℕ × {𝑋})‘𝑢) ∈ V)
5026, 45, 49syl2an 289 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → ((ℕ × {𝑋})‘𝑢) ∈ V)
51 1nn 9067 . . . . . . . . 9 1 ∈ ℕ
5251a1i 9 . . . . . . . 8 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑢 ∈ (ℤ‘(1 + 𝑀))) → 1 ∈ ℕ)
5313adantr 276 . . . . . . . 8 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑢 ∈ (ℤ‘(1 + 𝑀))) → 𝑀 ∈ ℕ)
5452, 53nnaddcld 9104 . . . . . . 7 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑢 ∈ (ℤ‘(1 + 𝑀))) → (1 + 𝑀) ∈ ℕ)
55 eluznn 9741 . . . . . . 7 (((1 + 𝑀) ∈ ℕ ∧ 𝑢 ∈ (ℤ‘(1 + 𝑀))) → 𝑢 ∈ ℕ)
5654, 55sylancom 420 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑢 ∈ (ℤ‘(1 + 𝑀))) → 𝑢 ∈ ℕ)
5726, 56, 49syl2an2r 595 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ 𝑢 ∈ (ℤ‘(1 + 𝑀))) → ((ℕ × {𝑋})‘𝑢) ∈ V)
58 simprl 529 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑢 ∈ V)
59 plusgslid 13019 . . . . . . . . 9 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
6059slotex 12934 . . . . . . . 8 (𝐺 ∈ Smgrp → (+g𝐺) ∈ V)
613, 60eqeltrid 2293 . . . . . . 7 (𝐺 ∈ Smgrp → + ∈ V)
6261ad2antrr 488 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → + ∈ V)
63 simprr 531 . . . . . 6 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
64 ovexg 5991 . . . . . 6 ((𝑢 ∈ V ∧ + ∈ V ∧ 𝑣 ∈ V) → (𝑢 + 𝑣) ∈ V)
6558, 62, 63, 64syl3anc 1250 . . . . 5 (((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢 + 𝑣) ∈ V)
6612, 14, 43, 50, 57, 65seq3shft2 10648 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq1( + , (ℕ × {𝑋}))‘𝑁) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
672, 3, 30, 31mulgnn 13537 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
6810, 26, 67syl2anc 411 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
6922seqeq1d 10620 . . . . 5 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → seq(𝑀 + 1)( + , (ℕ × {𝑋})) = seq(1 + 𝑀)( + , (ℕ × {𝑋})))
7069, 19fveq12d 5596 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)) = (seq(1 + 𝑀)( + , (ℕ × {𝑋}))‘(𝑁 + 𝑀)))
7166, 68, 703eqtr4d 2249 . . 3 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) = (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁)))
7235, 71oveq12d 5975 . 2 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((seq1( + , (ℕ × {𝑋}))‘𝑀) + (seq(𝑀 + 1)( + , (ℕ × {𝑋}))‘(𝑀 + 𝑁))))
7328, 33, 723eqtr4d 2249 1 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3638   × cxp 4681  cfv 5280  (class class class)co 5957  cc 7943  1c1 7946   + caddc 7948  cn 9056  cz 9392  cuz 9668  ...cfz 10150  seqcseq 10614  Basecbs 12907  +gcplusg 12984  Mgmcmgm 13261  Smgrpcsgrp 13308  .gcmg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-minusg 13411  df-mulg 13531
This theorem is referenced by:  mulgnn0dir  13563  mulgnnass  13568
  Copyright terms: Public domain W3C validator