![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subg0cl | GIF version |
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subg0cl.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
subg0cl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2187 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 13077 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
3 | eqid 2187 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
4 | eqid 2187 | . . . 4 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
5 | 3, 4 | grpidcl 12934 | . . 3 ⊢ ((𝐺 ↾s 𝑆) ∈ Grp → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
7 | subg0cl.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
8 | 1, 7 | subg0 13080 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
9 | 1 | subgbas 13078 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
10 | 6, 8, 9 | 3eltr4d 2271 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 ↾s cress 12477 0gc0g 12723 Grpcgrp 12906 SubGrpcsubg 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-iress 12484 df-plusg 12564 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12909 df-subg 13070 |
This theorem is referenced by: subgmulgcl 13087 issubg3 13092 issubg4m 13093 subgintm 13098 trivsubgd 13100 eqger 13124 ghmpreima 13160 islss4 13628 dflidl2rng 13727 rnglidlrng 13744 rng2idl0 13764 rng2idlsubg0 13767 2idlcpblrng 13768 |
Copyright terms: Public domain | W3C validator |