| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > negdii | GIF version | ||
| Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ | 
| pncan3i.2 | ⊢ 𝐵 ∈ ℂ | 
| Ref | Expression | 
|---|---|
| negdii | ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidi.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
| 2 | pncan3i.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
| 3 | 1, 2 | addcli 8030 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ | 
| 4 | 3 | negidi 8295 | . . 3 ⊢ ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = 0 | 
| 5 | 1 | negidi 8295 | . . . . 5 ⊢ (𝐴 + -𝐴) = 0 | 
| 6 | 2 | negidi 8295 | . . . . 5 ⊢ (𝐵 + -𝐵) = 0 | 
| 7 | 5, 6 | oveq12i 5934 | . . . 4 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = (0 + 0) | 
| 8 | 00id 8167 | . . . 4 ⊢ (0 + 0) = 0 | |
| 9 | 7, 8 | eqtri 2217 | . . 3 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = 0 | 
| 10 | 1 | negcli 8294 | . . . 4 ⊢ -𝐴 ∈ ℂ | 
| 11 | 2 | negcli 8294 | . . . 4 ⊢ -𝐵 ∈ ℂ | 
| 12 | 1, 10, 2, 11 | add4i 8191 | . . 3 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) | 
| 13 | 4, 9, 12 | 3eqtr2i 2223 | . 2 ⊢ ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) | 
| 14 | 3 | negcli 8294 | . . 3 ⊢ -(𝐴 + 𝐵) ∈ ℂ | 
| 15 | 10, 11 | addcli 8030 | . . 3 ⊢ (-𝐴 + -𝐵) ∈ ℂ | 
| 16 | 3, 14, 15 | addcani 8208 | . 2 ⊢ (((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) ↔ -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | 
| 17 | 13, 16 | mpbi 145 | 1 ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 -cneg 8198 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 | 
| This theorem is referenced by: negsubdii 8311 | 
| Copyright terms: Public domain | W3C validator |