ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdii GIF version

Theorem negdii 8327
Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
Assertion
Ref Expression
negdii -(𝐴 + 𝐵) = (-𝐴 + -𝐵)

Proof of Theorem negdii
StepHypRef Expression
1 negidi.1 . . . . 5 𝐴 ∈ ℂ
2 pncan3i.2 . . . . 5 𝐵 ∈ ℂ
31, 2addcli 8047 . . . 4 (𝐴 + 𝐵) ∈ ℂ
43negidi 8312 . . 3 ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = 0
51negidi 8312 . . . . 5 (𝐴 + -𝐴) = 0
62negidi 8312 . . . . 5 (𝐵 + -𝐵) = 0
75, 6oveq12i 5937 . . . 4 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = (0 + 0)
8 00id 8184 . . . 4 (0 + 0) = 0
97, 8eqtri 2217 . . 3 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = 0
101negcli 8311 . . . 4 -𝐴 ∈ ℂ
112negcli 8311 . . . 4 -𝐵 ∈ ℂ
121, 10, 2, 11add4i 8208 . . 3 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵))
134, 9, 123eqtr2i 2223 . 2 ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵))
143negcli 8311 . . 3 -(𝐴 + 𝐵) ∈ ℂ
1510, 11addcli 8047 . . 3 (-𝐴 + -𝐵) ∈ ℂ
163, 14, 15addcani 8225 . 2 (((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) ↔ -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
1713, 16mpbi 145 1 -(𝐴 + 𝐵) = (-𝐴 + -𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894  0cc0 7896   + caddc 7899  -cneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by:  negsubdii  8328
  Copyright terms: Public domain W3C validator