| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negdii | GIF version | ||
| Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| negdii | ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidi.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
| 2 | pncan3i.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
| 3 | 1, 2 | addcli 8146 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| 4 | 3 | negidi 8411 | . . 3 ⊢ ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = 0 |
| 5 | 1 | negidi 8411 | . . . . 5 ⊢ (𝐴 + -𝐴) = 0 |
| 6 | 2 | negidi 8411 | . . . . 5 ⊢ (𝐵 + -𝐵) = 0 |
| 7 | 5, 6 | oveq12i 6012 | . . . 4 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = (0 + 0) |
| 8 | 00id 8283 | . . . 4 ⊢ (0 + 0) = 0 | |
| 9 | 7, 8 | eqtri 2250 | . . 3 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = 0 |
| 10 | 1 | negcli 8410 | . . . 4 ⊢ -𝐴 ∈ ℂ |
| 11 | 2 | negcli 8410 | . . . 4 ⊢ -𝐵 ∈ ℂ |
| 12 | 1, 10, 2, 11 | add4i 8307 | . . 3 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) |
| 13 | 4, 9, 12 | 3eqtr2i 2256 | . 2 ⊢ ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) |
| 14 | 3 | negcli 8410 | . . 3 ⊢ -(𝐴 + 𝐵) ∈ ℂ |
| 15 | 10, 11 | addcli 8146 | . . 3 ⊢ (-𝐴 + -𝐵) ∈ ℂ |
| 16 | 3, 14, 15 | addcani 8324 | . 2 ⊢ (((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) ↔ -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
| 17 | 13, 16 | mpbi 145 | 1 ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 0cc0 7995 + caddc 7998 -cneg 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: negsubdii 8427 |
| Copyright terms: Public domain | W3C validator |