Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negdii | GIF version |
Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
negidi.1 | ⊢ 𝐴 ∈ ℂ |
pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
negdii | ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidi.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | pncan3i.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | addcli 7924 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
4 | 3 | negidi 8188 | . . 3 ⊢ ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = 0 |
5 | 1 | negidi 8188 | . . . . 5 ⊢ (𝐴 + -𝐴) = 0 |
6 | 2 | negidi 8188 | . . . . 5 ⊢ (𝐵 + -𝐵) = 0 |
7 | 5, 6 | oveq12i 5865 | . . . 4 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = (0 + 0) |
8 | 00id 8060 | . . . 4 ⊢ (0 + 0) = 0 | |
9 | 7, 8 | eqtri 2191 | . . 3 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = 0 |
10 | 1 | negcli 8187 | . . . 4 ⊢ -𝐴 ∈ ℂ |
11 | 2 | negcli 8187 | . . . 4 ⊢ -𝐵 ∈ ℂ |
12 | 1, 10, 2, 11 | add4i 8084 | . . 3 ⊢ ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) |
13 | 4, 9, 12 | 3eqtr2i 2197 | . 2 ⊢ ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) |
14 | 3 | negcli 8187 | . . 3 ⊢ -(𝐴 + 𝐵) ∈ ℂ |
15 | 10, 11 | addcli 7924 | . . 3 ⊢ (-𝐴 + -𝐵) ∈ ℂ |
16 | 3, 14, 15 | addcani 8101 | . 2 ⊢ (((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) ↔ -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) |
17 | 13, 16 | mpbi 144 | 1 ⊢ -(𝐴 + 𝐵) = (-𝐴 + -𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 -cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: negsubdii 8204 |
Copyright terms: Public domain | W3C validator |