ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negdii GIF version

Theorem negdii 8426
Description: Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
Assertion
Ref Expression
negdii -(𝐴 + 𝐵) = (-𝐴 + -𝐵)

Proof of Theorem negdii
StepHypRef Expression
1 negidi.1 . . . . 5 𝐴 ∈ ℂ
2 pncan3i.2 . . . . 5 𝐵 ∈ ℂ
31, 2addcli 8146 . . . 4 (𝐴 + 𝐵) ∈ ℂ
43negidi 8411 . . 3 ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = 0
51negidi 8411 . . . . 5 (𝐴 + -𝐴) = 0
62negidi 8411 . . . . 5 (𝐵 + -𝐵) = 0
75, 6oveq12i 6012 . . . 4 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = (0 + 0)
8 00id 8283 . . . 4 (0 + 0) = 0
97, 8eqtri 2250 . . 3 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = 0
101negcli 8410 . . . 4 -𝐴 ∈ ℂ
112negcli 8410 . . . 4 -𝐵 ∈ ℂ
121, 10, 2, 11add4i 8307 . . 3 ((𝐴 + -𝐴) + (𝐵 + -𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵))
134, 9, 123eqtr2i 2256 . 2 ((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵))
143negcli 8410 . . 3 -(𝐴 + 𝐵) ∈ ℂ
1510, 11addcli 8146 . . 3 (-𝐴 + -𝐵) ∈ ℂ
163, 14, 15addcani 8324 . 2 (((𝐴 + 𝐵) + -(𝐴 + 𝐵)) = ((𝐴 + 𝐵) + (-𝐴 + -𝐵)) ↔ -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
1713, 16mpbi 145 1 -(𝐴 + 𝐵) = (-𝐴 + -𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993  0cc0 7995   + caddc 7998  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316
This theorem is referenced by:  negsubdii  8427
  Copyright terms: Public domain W3C validator