| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 8002, for naming consistency with adddii 8055. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 8002 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 · cmul 7903 |
| This theorem was proved from axioms: ax-distr 8002 |
| This theorem is referenced by: adddir 8036 adddii 8055 adddid 8070 muladd11 8178 cnegex 8223 muladd 8429 nnmulcl 9030 expmul 10695 bernneq 10771 sqoddm1div8 10804 isermulc2 11524 efexp 11866 efi4p 11901 sinadd 11920 cosadd 11921 cos2tsin 11935 cos01bnd 11942 absefib 11955 efieq1re 11956 demoivreALT 11958 odd2np1 12057 opoe 12079 opeo 12081 gcdmultiple 12214 pythagtriplem12 12471 cncrng 14203 sinperlem 15152 2lgslem3d1 15449 |
| Copyright terms: Public domain | W3C validator |