| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 8036, for naming consistency with adddii 8089. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 8036 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 · cmul 7937 |
| This theorem was proved from axioms: ax-distr 8036 |
| This theorem is referenced by: adddir 8070 adddii 8089 adddid 8104 muladd11 8212 cnegex 8257 muladd 8463 nnmulcl 9064 expmul 10736 bernneq 10812 sqoddm1div8 10845 isermulc2 11695 efexp 12037 efi4p 12072 sinadd 12091 cosadd 12092 cos2tsin 12106 cos01bnd 12113 absefib 12126 efieq1re 12127 demoivreALT 12129 odd2np1 12228 opoe 12250 opeo 12252 gcdmultiple 12385 pythagtriplem12 12642 cncrng 14375 sinperlem 15324 2lgslem3d1 15621 |
| Copyright terms: Public domain | W3C validator |