| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 7985, for naming consistency with adddii 8038. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 7985 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5923 ℂcc 7879 + caddc 7884 · cmul 7886 |
| This theorem was proved from axioms: ax-distr 7985 |
| This theorem is referenced by: adddir 8019 adddii 8038 adddid 8053 muladd11 8161 cnegex 8206 muladd 8412 nnmulcl 9013 expmul 10678 bernneq 10754 sqoddm1div8 10787 isermulc2 11507 efexp 11849 efi4p 11884 sinadd 11903 cosadd 11904 cos2tsin 11918 cos01bnd 11925 absefib 11938 efieq1re 11939 demoivreALT 11941 odd2np1 12040 opoe 12062 opeo 12064 gcdmultiple 12197 pythagtriplem12 12454 cncrng 14135 sinperlem 15054 2lgslem3d1 15351 |
| Copyright terms: Public domain | W3C validator |