![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adddi | GIF version |
Description: Alias for ax-distr 7978, for naming consistency with adddii 8031. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 7978 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 · cmul 7879 |
This theorem was proved from axioms: ax-distr 7978 |
This theorem is referenced by: adddir 8012 adddii 8031 adddid 8046 muladd11 8154 cnegex 8199 muladd 8405 nnmulcl 9005 expmul 10658 bernneq 10734 sqoddm1div8 10767 isermulc2 11486 efexp 11828 efi4p 11863 sinadd 11882 cosadd 11883 cos2tsin 11897 cos01bnd 11904 absefib 11917 efieq1re 11918 demoivreALT 11920 odd2np1 12017 opoe 12039 opeo 12041 gcdmultiple 12160 pythagtriplem12 12416 cncrng 14068 sinperlem 14984 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |