| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 8000, for naming consistency with adddii 8053. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 8000 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 · cmul 7901 |
| This theorem was proved from axioms: ax-distr 8000 |
| This theorem is referenced by: adddir 8034 adddii 8053 adddid 8068 muladd11 8176 cnegex 8221 muladd 8427 nnmulcl 9028 expmul 10693 bernneq 10769 sqoddm1div8 10802 isermulc2 11522 efexp 11864 efi4p 11899 sinadd 11918 cosadd 11919 cos2tsin 11933 cos01bnd 11940 absefib 11953 efieq1re 11954 demoivreALT 11956 odd2np1 12055 opoe 12077 opeo 12079 gcdmultiple 12212 pythagtriplem12 12469 cncrng 14201 sinperlem 15128 2lgslem3d1 15425 |
| Copyright terms: Public domain | W3C validator |