| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 8111, for naming consistency with adddii 8164. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 8111 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 · cmul 8012 |
| This theorem was proved from axioms: ax-distr 8111 |
| This theorem is referenced by: adddir 8145 adddii 8164 adddid 8179 muladd11 8287 cnegex 8332 muladd 8538 nnmulcl 9139 expmul 10814 bernneq 10890 sqoddm1div8 10923 isermulc2 11859 efexp 12201 efi4p 12236 sinadd 12255 cosadd 12256 cos2tsin 12270 cos01bnd 12277 absefib 12290 efieq1re 12291 demoivreALT 12293 odd2np1 12392 opoe 12414 opeo 12416 gcdmultiple 12549 pythagtriplem12 12806 cncrng 14541 sinperlem 15490 2lgslem3d1 15787 |
| Copyright terms: Public domain | W3C validator |