ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddi GIF version

Theorem adddi 7881
Description: Alias for ax-distr 7853, for naming consistency with adddii 7905. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
adddi ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem adddi
StepHypRef Expression
1 ax-distr 7853 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  wcel 2136  (class class class)co 5841  cc 7747   + caddc 7752   · cmul 7754
This theorem was proved from axioms:  ax-distr 7853
This theorem is referenced by:  adddir  7886  adddii  7905  adddid  7919  muladd11  8027  cnegex  8072  muladd  8278  nnmulcl  8874  expmul  10496  bernneq  10571  sqoddm1div8  10604  isermulc2  11277  efexp  11619  efi4p  11654  sinadd  11673  cosadd  11674  cos2tsin  11688  cos01bnd  11695  absefib  11707  efieq1re  11708  demoivreALT  11710  odd2np1  11806  opoe  11828  opeo  11830  gcdmultiple  11949  pythagtriplem12  12203  sinperlem  13329
  Copyright terms: Public domain W3C validator