| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddi | GIF version | ||
| Description: Alias for ax-distr 8071, for naming consistency with adddii 8124. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 8071 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 · cmul 7972 |
| This theorem was proved from axioms: ax-distr 8071 |
| This theorem is referenced by: adddir 8105 adddii 8124 adddid 8139 muladd11 8247 cnegex 8292 muladd 8498 nnmulcl 9099 expmul 10773 bernneq 10849 sqoddm1div8 10882 isermulc2 11817 efexp 12159 efi4p 12194 sinadd 12213 cosadd 12214 cos2tsin 12228 cos01bnd 12235 absefib 12248 efieq1re 12249 demoivreALT 12251 odd2np1 12350 opoe 12372 opeo 12374 gcdmultiple 12507 pythagtriplem12 12764 cncrng 14498 sinperlem 15447 2lgslem3d1 15744 |
| Copyright terms: Public domain | W3C validator |