ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinperlem GIF version

Theorem sinperlem 13369
Description: Lemma for sinper 13370 and cosper 13371. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
sinperlem.2 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
Assertion
Ref Expression
sinperlem ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 9196 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 8928 . . . . . . . . . 10 2 ∈ ℂ
3 picn 13348 . . . . . . . . . 10 π ∈ ℂ
42, 3mulcli 7904 . . . . . . . . 9 (2 · π) ∈ ℂ
5 mulcl 7880 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (𝐾 · (2 · π)) ∈ ℂ)
61, 4, 5sylancl 410 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) ∈ ℂ)
7 ax-icn 7848 . . . . . . . . 9 i ∈ ℂ
8 adddi 7885 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
97, 8mp3an1 1314 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
106, 9sylan2 284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
11 mul12 8027 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
127, 4, 11mp3an13 1318 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
131, 12syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
147, 4mulcli 7904 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
15 mulcom 7882 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (i · (2 · π)) ∈ ℂ) → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
161, 14, 15sylancl 410 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
1713, 16eqtrd 2198 . . . . . . . . 9 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1817adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1918oveq2d 5858 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((i · 𝐴) + (i · (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2010, 19eqtrd 2198 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2120fveq2d 5490 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))))
22 mulcl 7880 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
237, 22mpan 421 . . . . . 6 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
24 efper 13368 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2523, 24sylan 281 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2621, 25eqtrd 2198 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(i · 𝐴)))
27 negicn 8099 . . . . . . . . 9 -i ∈ ℂ
28 adddi 7885 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
2927, 28mp3an1 1314 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
306, 29sylan2 284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
3117negeqd 8093 . . . . . . . . . 10 (𝐾 ∈ ℤ → -(i · (𝐾 · (2 · π))) = -((i · (2 · π)) · 𝐾))
32 mulneg1 8293 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
337, 6, 32sylancr 411 . . . . . . . . . 10 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
34 mulneg2 8294 . . . . . . . . . . 11 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3514, 1, 34sylancr 411 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3631, 33, 353eqtr4d 2208 . . . . . . . . 9 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3736adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3837oveq2d 5858 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
3930, 38eqtrd 2198 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
4039fveq2d 5490 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))))
41 mulcl 7880 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4227, 41mpan 421 . . . . . 6 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
43 znegcl 9222 . . . . . 6 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
44 efper 13368 . . . . . 6 (((-i · 𝐴) ∈ ℂ ∧ -𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4542, 43, 44syl2an 287 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4640, 45eqtrd 2198 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(-i · 𝐴)))
4726, 46oveq12d 5860 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) = ((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))))
4847oveq1d 5857 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
49 addcl 7878 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
506, 49sylan2 284 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
51 sinperlem.2 . . 3 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
5250, 51syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
53 sinperlem.1 . . 3 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5453adantr 274 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5548, 52, 543eqtr4d 2208 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cfv 5188  (class class class)co 5842  cc 7751  ici 7755   + caddc 7756   · cmul 7758  -cneg 8070   / cdiv 8568  2c2 8908  cz 9191  expce 11583  πcpi 11588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  sinper  13370  cosper  13371
  Copyright terms: Public domain W3C validator