ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinperlem GIF version

Theorem sinperlem 12937
Description: Lemma for sinper 12938 and cosper 12939. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
sinperlem.2 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
Assertion
Ref Expression
sinperlem ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 9083 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 8815 . . . . . . . . . 10 2 ∈ ℂ
3 picn 12916 . . . . . . . . . 10 π ∈ ℂ
42, 3mulcli 7795 . . . . . . . . 9 (2 · π) ∈ ℂ
5 mulcl 7771 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (𝐾 · (2 · π)) ∈ ℂ)
61, 4, 5sylancl 410 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) ∈ ℂ)
7 ax-icn 7739 . . . . . . . . 9 i ∈ ℂ
8 adddi 7776 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
97, 8mp3an1 1303 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
106, 9sylan2 284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
11 mul12 7915 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
127, 4, 11mp3an13 1307 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
131, 12syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
147, 4mulcli 7795 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
15 mulcom 7773 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (i · (2 · π)) ∈ ℂ) → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
161, 14, 15sylancl 410 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
1713, 16eqtrd 2173 . . . . . . . . 9 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1817adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1918oveq2d 5798 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((i · 𝐴) + (i · (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2010, 19eqtrd 2173 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2120fveq2d 5433 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))))
22 mulcl 7771 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
237, 22mpan 421 . . . . . 6 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
24 efper 12936 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2523, 24sylan 281 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2621, 25eqtrd 2173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(i · 𝐴)))
27 negicn 7987 . . . . . . . . 9 -i ∈ ℂ
28 adddi 7776 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
2927, 28mp3an1 1303 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
306, 29sylan2 284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
3117negeqd 7981 . . . . . . . . . 10 (𝐾 ∈ ℤ → -(i · (𝐾 · (2 · π))) = -((i · (2 · π)) · 𝐾))
32 mulneg1 8181 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
337, 6, 32sylancr 411 . . . . . . . . . 10 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
34 mulneg2 8182 . . . . . . . . . . 11 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3514, 1, 34sylancr 411 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3631, 33, 353eqtr4d 2183 . . . . . . . . 9 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3736adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3837oveq2d 5798 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
3930, 38eqtrd 2173 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
4039fveq2d 5433 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))))
41 mulcl 7771 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4227, 41mpan 421 . . . . . 6 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
43 znegcl 9109 . . . . . 6 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
44 efper 12936 . . . . . 6 (((-i · 𝐴) ∈ ℂ ∧ -𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4542, 43, 44syl2an 287 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4640, 45eqtrd 2173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(-i · 𝐴)))
4726, 46oveq12d 5800 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) = ((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))))
4847oveq1d 5797 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
49 addcl 7769 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
506, 49sylan2 284 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
51 sinperlem.2 . . 3 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
5250, 51syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
53 sinperlem.1 . . 3 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5453adantr 274 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5548, 52, 543eqtr4d 2183 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  cfv 5131  (class class class)co 5782  cc 7642  ici 7646   + caddc 7647   · cmul 7649  -cneg 7958   / cdiv 8456  2c2 8795  cz 9078  expce 11385  πcpi 11390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-pi 11396  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834
This theorem is referenced by:  sinper  12938  cosper  12939
  Copyright terms: Public domain W3C validator