ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinperlem GIF version

Theorem sinperlem 14232
Description: Lemma for sinper 14233 and cosper 14234. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
sinperlem.2 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
Assertion
Ref Expression
sinperlem ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 9258 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 8990 . . . . . . . . . 10 2 ∈ ℂ
3 picn 14211 . . . . . . . . . 10 π ∈ ℂ
42, 3mulcli 7962 . . . . . . . . 9 (2 · π) ∈ ℂ
5 mulcl 7938 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (𝐾 · (2 · π)) ∈ ℂ)
61, 4, 5sylancl 413 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) ∈ ℂ)
7 ax-icn 7906 . . . . . . . . 9 i ∈ ℂ
8 adddi 7943 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
97, 8mp3an1 1324 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
106, 9sylan2 286 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
11 mul12 8086 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
127, 4, 11mp3an13 1328 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
131, 12syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
147, 4mulcli 7962 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
15 mulcom 7940 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (i · (2 · π)) ∈ ℂ) → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
161, 14, 15sylancl 413 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
1713, 16eqtrd 2210 . . . . . . . . 9 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1817adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1918oveq2d 5891 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((i · 𝐴) + (i · (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2010, 19eqtrd 2210 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2120fveq2d 5520 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))))
22 mulcl 7938 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
237, 22mpan 424 . . . . . 6 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
24 efper 14231 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2523, 24sylan 283 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2621, 25eqtrd 2210 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(i · 𝐴)))
27 negicn 8158 . . . . . . . . 9 -i ∈ ℂ
28 adddi 7943 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
2927, 28mp3an1 1324 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
306, 29sylan2 286 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
3117negeqd 8152 . . . . . . . . . 10 (𝐾 ∈ ℤ → -(i · (𝐾 · (2 · π))) = -((i · (2 · π)) · 𝐾))
32 mulneg1 8352 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
337, 6, 32sylancr 414 . . . . . . . . . 10 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
34 mulneg2 8353 . . . . . . . . . . 11 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3514, 1, 34sylancr 414 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3631, 33, 353eqtr4d 2220 . . . . . . . . 9 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3736adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3837oveq2d 5891 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
3930, 38eqtrd 2210 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
4039fveq2d 5520 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))))
41 mulcl 7938 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4227, 41mpan 424 . . . . . 6 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
43 znegcl 9284 . . . . . 6 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
44 efper 14231 . . . . . 6 (((-i · 𝐴) ∈ ℂ ∧ -𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4542, 43, 44syl2an 289 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4640, 45eqtrd 2210 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(-i · 𝐴)))
4726, 46oveq12d 5893 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) = ((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))))
4847oveq1d 5890 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
49 addcl 7936 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
506, 49sylan2 286 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
51 sinperlem.2 . . 3 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
5250, 51syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
53 sinperlem.1 . . 3 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5453adantr 276 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5548, 52, 543eqtr4d 2220 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5217  (class class class)co 5875  cc 7809  ici 7813   + caddc 7814   · cmul 7816  -cneg 8129   / cdiv 8629  2c2 8970  cz 9253  expce 11650  πcpi 11655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931  ax-pre-suploc 7932  ax-addf 7933  ax-mulf 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-disj 3982  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-of 6083  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-map 6650  df-pm 6651  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-ioo 9892  df-ioc 9893  df-ico 9894  df-icc 9895  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-bc 10728  df-ihash 10756  df-shft 10824  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362  df-ef 11656  df-sin 11658  df-cos 11659  df-pi 11661  df-rest 12690  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546  df-ntr 13599  df-cn 13691  df-cnp 13692  df-tx 13756  df-cncf 14061  df-limced 14128  df-dvap 14129
This theorem is referenced by:  sinper  14233  cosper  14234
  Copyright terms: Public domain W3C validator