Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recn | GIF version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7866 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 ℝcr 7773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: mulid1 7917 recnd 7948 pnfnre 7961 mnfnre 7962 cnegexlem1 8094 cnegexlem2 8095 cnegexlem3 8096 cnegex 8097 renegcl 8180 resubcl 8183 negf1o 8301 mul02lem2 8307 ltaddneg 8343 ltaddnegr 8344 ltaddsub2 8356 leaddsub2 8358 leltadd 8366 ltaddpos 8371 ltaddpos2 8372 posdif 8374 lenegcon1 8385 lenegcon2 8386 addge01 8391 addge02 8392 leaddle0 8396 mullt0 8399 recexre 8497 msqge0 8535 mulge0 8538 aprcl 8565 recexap 8571 ltm1 8762 prodgt02 8769 prodge02 8771 ltmul2 8772 lemul2 8773 lemul2a 8775 ltmulgt12 8781 lemulge12 8783 gt0div 8786 ge0div 8787 ltmuldiv2 8791 ltdivmul 8792 ltdivmul2 8794 ledivmul2 8796 lemuldiv2 8798 negiso 8871 cju 8877 nnge1 8901 halfpos 9109 lt2halves 9113 addltmul 9114 avgle1 9118 avgle2 9119 div4p1lem1div2 9131 nnrecl 9133 elznn0 9227 elznn 9228 nzadd 9264 zmulcl 9265 difgtsumgt 9281 elz2 9283 gtndiv 9307 zeo 9317 supminfex 9556 eqreznegel 9573 negm 9574 irradd 9605 irrmul 9606 divlt1lt 9681 divle1le 9682 xnegneg 9790 rexsub 9810 xnegid 9816 xaddcom 9818 xaddid1 9819 xnegdi 9825 xaddass 9826 xleaddadd 9844 divelunit 9959 fzonmapblen 10143 expgt1 10514 mulexpzap 10516 leexp1a 10531 expubnd 10533 sqgt0ap 10544 lt2sq 10549 le2sq 10550 sqge0 10552 sumsqeq0 10554 bernneq 10596 bernneq2 10597 nn0ltexp2 10644 crre 10821 crim 10822 reim0 10825 mulreap 10828 rere 10829 remul2 10837 redivap 10838 immul2 10844 imdivap 10845 cjre 10846 cjreim 10867 rennim 10966 sqrt0rlem 10967 resqrexlemover 10974 absreimsq 11031 absreim 11032 absnid 11037 leabs 11038 absre 11041 absresq 11042 sqabs 11046 ltabs 11051 absdiflt 11056 absdifle 11057 lenegsq 11059 abssuble0 11067 dfabsmax 11181 max0addsup 11183 negfi 11191 minclpr 11200 reefcl 11631 efgt0 11647 reeftlcl 11652 resinval 11678 recosval 11679 resin4p 11681 recos4p 11682 resincl 11683 recoscl 11684 retanclap 11685 efieq 11698 sinbnd 11715 cosbnd 11716 absefi 11731 odd2np1 11832 infssuzex 11904 remetdval 13333 bl2ioo 13336 ioo2bl 13337 sincosq1sgn 13541 sincosq2sgn 13542 sincosq3sgn 13543 sincosq4sgn 13544 sinq12gt0 13545 relogoprlem 13583 logcxp 13612 rpcxpcl 13618 cxpcom 13651 rprelogbdiv 13669 triap 14061 trirec0 14076 |
Copyright terms: Public domain | W3C validator |