| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8024 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | sseli 3190 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℂcc 7930 ℝcr 7931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: mulrid 8076 recnd 8108 pnfnre 8121 mnfnre 8122 cnegexlem1 8254 cnegexlem2 8255 cnegexlem3 8256 cnegex 8257 renegcl 8340 resubcl 8343 negf1o 8461 mul02lem2 8467 ltaddneg 8504 ltaddnegr 8505 ltaddsub2 8517 leaddsub2 8519 leltadd 8527 ltaddpos 8532 ltaddpos2 8533 posdif 8535 lenegcon1 8546 lenegcon2 8547 addge01 8552 addge02 8553 leaddle0 8557 mullt0 8560 recexre 8658 msqge0 8696 mulge0 8699 aprcl 8726 recexap 8733 rerecapb 8923 ltm1 8926 prodgt02 8933 prodge02 8935 ltmul2 8936 lemul2 8937 lemul2a 8939 ltmulgt12 8945 lemulge12 8947 gt0div 8950 ge0div 8951 ltmuldiv2 8955 ltdivmul 8956 ltdivmul2 8958 ledivmul2 8960 lemuldiv2 8962 negiso 9035 cju 9041 nnge1 9066 halfpos 9275 lt2halves 9280 addltmul 9281 avgle1 9285 avgle2 9286 div4p1lem1div2 9298 nnrecl 9300 elznn0 9394 elznn 9395 nzadd 9432 zmulcl 9433 difgtsumgt 9449 elz2 9451 gtndiv 9475 zeo 9485 supminfex 9725 eqreznegel 9742 negm 9743 irradd 9774 irrmul 9775 divlt1lt 9853 divle1le 9854 xnegneg 9962 rexsub 9982 xnegid 9988 xaddcom 9990 xaddid1 9991 xnegdi 9997 xaddass 9998 xleaddadd 10016 divelunit 10131 fzonmapblen 10318 infssuzex 10383 expgt1 10729 mulexpzap 10731 leexp1a 10746 expubnd 10748 sqgt0ap 10760 lt2sq 10765 le2sq 10766 sqge0 10768 sumsqeq0 10770 bernneq 10812 bernneq2 10813 nn0ltexp2 10861 crre 11212 crim 11213 reim0 11216 mulreap 11219 rere 11220 remul2 11228 redivap 11229 immul2 11235 imdivap 11236 cjre 11237 cjreim 11258 rennim 11357 sqrt0rlem 11358 resqrexlemover 11365 absreimsq 11422 absreim 11423 absnid 11428 leabs 11429 absre 11432 absresq 11433 sqabs 11437 ltabs 11442 absdiflt 11447 absdifle 11448 lenegsq 11450 abssuble0 11458 dfabsmax 11572 max0addsup 11574 negfi 11583 minclpr 11592 reefcl 12023 efgt0 12039 reeftlcl 12044 resinval 12070 recosval 12071 resin4p 12073 recos4p 12074 resincl 12075 recoscl 12076 retanclap 12077 efieq 12090 sinbnd 12107 cosbnd 12108 absefi 12124 odd2np1 12228 remetdval 15063 bl2ioo 15066 ioo2bl 15067 hoverb 15164 plyreres 15280 sincosq1sgn 15342 sincosq2sgn 15343 sincosq3sgn 15344 sincosq4sgn 15345 sinq12gt0 15346 relogoprlem 15384 logcxp 15413 rpcxpcl 15419 cxpcom 15454 rprelogbdiv 15473 gausslemma2dlem1a 15579 triap 16042 trirec0 16057 |
| Copyright terms: Public domain | W3C validator |