| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8059 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | sseli 3200 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ℂcc 7965 ℝcr 7966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: mulrid 8111 recnd 8143 pnfnre 8156 mnfnre 8157 cnegexlem1 8289 cnegexlem2 8290 cnegexlem3 8291 cnegex 8292 renegcl 8375 resubcl 8378 negf1o 8496 mul02lem2 8502 ltaddneg 8539 ltaddnegr 8540 ltaddsub2 8552 leaddsub2 8554 leltadd 8562 ltaddpos 8567 ltaddpos2 8568 posdif 8570 lenegcon1 8581 lenegcon2 8582 addge01 8587 addge02 8588 leaddle0 8592 mullt0 8595 recexre 8693 msqge0 8731 mulge0 8734 aprcl 8761 recexap 8768 rerecapb 8958 ltm1 8961 prodgt02 8968 prodge02 8970 ltmul2 8971 lemul2 8972 lemul2a 8974 ltmulgt12 8980 lemulge12 8982 gt0div 8985 ge0div 8986 ltmuldiv2 8990 ltdivmul 8991 ltdivmul2 8993 ledivmul2 8995 lemuldiv2 8997 negiso 9070 cju 9076 nnge1 9101 halfpos 9310 lt2halves 9315 addltmul 9316 avgle1 9320 avgle2 9321 div4p1lem1div2 9333 nnrecl 9335 elznn0 9429 elznn 9430 nzadd 9467 zmulcl 9468 difgtsumgt 9484 elz2 9486 gtndiv 9510 zeo 9520 supminfex 9760 eqreznegel 9777 negm 9778 irradd 9809 irrmul 9810 divlt1lt 9888 divle1le 9889 xnegneg 9997 rexsub 10017 xnegid 10023 xaddcom 10025 xaddid1 10026 xnegdi 10032 xaddass 10033 xleaddadd 10051 divelunit 10166 fzonmapblen 10355 infssuzex 10420 expgt1 10766 mulexpzap 10768 leexp1a 10783 expubnd 10785 sqgt0ap 10797 lt2sq 10802 le2sq 10803 sqge0 10805 sumsqeq0 10807 bernneq 10849 bernneq2 10850 nn0ltexp2 10898 swrdccatin2 11227 swrdccat3blem 11237 crre 11334 crim 11335 reim0 11338 mulreap 11341 rere 11342 remul2 11350 redivap 11351 immul2 11357 imdivap 11358 cjre 11359 cjreim 11380 rennim 11479 sqrt0rlem 11480 resqrexlemover 11487 absreimsq 11544 absreim 11545 absnid 11550 leabs 11551 absre 11554 absresq 11555 sqabs 11559 ltabs 11564 absdiflt 11569 absdifle 11570 lenegsq 11572 abssuble0 11580 dfabsmax 11694 max0addsup 11696 negfi 11705 minclpr 11714 reefcl 12145 efgt0 12161 reeftlcl 12166 resinval 12192 recosval 12193 resin4p 12195 recos4p 12196 resincl 12197 recoscl 12198 retanclap 12199 efieq 12212 sinbnd 12229 cosbnd 12230 absefi 12246 odd2np1 12350 remetdval 15186 bl2ioo 15189 ioo2bl 15190 hoverb 15287 plyreres 15403 sincosq1sgn 15465 sincosq2sgn 15466 sincosq3sgn 15467 sincosq4sgn 15468 sinq12gt0 15469 relogoprlem 15507 logcxp 15536 rpcxpcl 15542 cxpcom 15577 rprelogbdiv 15596 gausslemma2dlem1a 15702 triap 16308 trirec0 16323 |
| Copyright terms: Public domain | W3C validator |