Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recn | GIF version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7859 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7765 ℝcr 7766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7859 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: mulid1 7910 recnd 7941 pnfnre 7954 mnfnre 7955 cnegexlem1 8087 cnegexlem2 8088 cnegexlem3 8089 cnegex 8090 renegcl 8173 resubcl 8176 negf1o 8294 mul02lem2 8300 ltaddneg 8336 ltaddnegr 8337 ltaddsub2 8349 leaddsub2 8351 leltadd 8359 ltaddpos 8364 ltaddpos2 8365 posdif 8367 lenegcon1 8378 lenegcon2 8379 addge01 8384 addge02 8385 leaddle0 8389 mullt0 8392 recexre 8490 msqge0 8528 mulge0 8531 aprcl 8558 recexap 8564 ltm1 8755 prodgt02 8762 prodge02 8764 ltmul2 8765 lemul2 8766 lemul2a 8768 ltmulgt12 8774 lemulge12 8776 gt0div 8779 ge0div 8780 ltmuldiv2 8784 ltdivmul 8785 ltdivmul2 8787 ledivmul2 8789 lemuldiv2 8791 negiso 8864 cju 8870 nnge1 8894 halfpos 9102 lt2halves 9106 addltmul 9107 avgle1 9111 avgle2 9112 div4p1lem1div2 9124 nnrecl 9126 elznn0 9220 elznn 9221 nzadd 9257 zmulcl 9258 difgtsumgt 9274 elz2 9276 gtndiv 9300 zeo 9310 supminfex 9549 eqreznegel 9566 negm 9567 irradd 9598 irrmul 9599 divlt1lt 9674 divle1le 9675 xnegneg 9783 rexsub 9803 xnegid 9809 xaddcom 9811 xaddid1 9812 xnegdi 9818 xaddass 9819 xleaddadd 9837 divelunit 9952 fzonmapblen 10136 expgt1 10507 mulexpzap 10509 leexp1a 10524 expubnd 10526 sqgt0ap 10537 lt2sq 10542 le2sq 10543 sqge0 10545 sumsqeq0 10547 bernneq 10589 bernneq2 10590 nn0ltexp2 10637 crre 10814 crim 10815 reim0 10818 mulreap 10821 rere 10822 remul2 10830 redivap 10831 immul2 10837 imdivap 10838 cjre 10839 cjreim 10860 rennim 10959 sqrt0rlem 10960 resqrexlemover 10967 absreimsq 11024 absreim 11025 absnid 11030 leabs 11031 absre 11034 absresq 11035 sqabs 11039 ltabs 11044 absdiflt 11049 absdifle 11050 lenegsq 11052 abssuble0 11060 dfabsmax 11174 max0addsup 11176 negfi 11184 minclpr 11193 reefcl 11624 efgt0 11640 reeftlcl 11645 resinval 11671 recosval 11672 resin4p 11674 recos4p 11675 resincl 11676 recoscl 11677 retanclap 11678 efieq 11691 sinbnd 11708 cosbnd 11709 absefi 11724 odd2np1 11825 infssuzex 11897 remetdval 13298 bl2ioo 13301 ioo2bl 13302 sincosq1sgn 13506 sincosq2sgn 13507 sincosq3sgn 13508 sincosq4sgn 13509 sinq12gt0 13510 relogoprlem 13548 logcxp 13577 rpcxpcl 13583 cxpcom 13616 rprelogbdiv 13634 triap 14026 trirec0 14041 |
Copyright terms: Public domain | W3C validator |