| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 7990 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7896 ℝcr 7897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: mulrid 8042 recnd 8074 pnfnre 8087 mnfnre 8088 cnegexlem1 8220 cnegexlem2 8221 cnegexlem3 8222 cnegex 8223 renegcl 8306 resubcl 8309 negf1o 8427 mul02lem2 8433 ltaddneg 8470 ltaddnegr 8471 ltaddsub2 8483 leaddsub2 8485 leltadd 8493 ltaddpos 8498 ltaddpos2 8499 posdif 8501 lenegcon1 8512 lenegcon2 8513 addge01 8518 addge02 8519 leaddle0 8523 mullt0 8526 recexre 8624 msqge0 8662 mulge0 8665 aprcl 8692 recexap 8699 rerecapb 8889 ltm1 8892 prodgt02 8899 prodge02 8901 ltmul2 8902 lemul2 8903 lemul2a 8905 ltmulgt12 8911 lemulge12 8913 gt0div 8916 ge0div 8917 ltmuldiv2 8921 ltdivmul 8922 ltdivmul2 8924 ledivmul2 8926 lemuldiv2 8928 negiso 9001 cju 9007 nnge1 9032 halfpos 9241 lt2halves 9246 addltmul 9247 avgle1 9251 avgle2 9252 div4p1lem1div2 9264 nnrecl 9266 elznn0 9360 elznn 9361 nzadd 9397 zmulcl 9398 difgtsumgt 9414 elz2 9416 gtndiv 9440 zeo 9450 supminfex 9690 eqreznegel 9707 negm 9708 irradd 9739 irrmul 9740 divlt1lt 9818 divle1le 9819 xnegneg 9927 rexsub 9947 xnegid 9953 xaddcom 9955 xaddid1 9956 xnegdi 9962 xaddass 9963 xleaddadd 9981 divelunit 10096 fzonmapblen 10282 infssuzex 10342 expgt1 10688 mulexpzap 10690 leexp1a 10705 expubnd 10707 sqgt0ap 10719 lt2sq 10724 le2sq 10725 sqge0 10727 sumsqeq0 10729 bernneq 10771 bernneq2 10772 nn0ltexp2 10820 crre 11041 crim 11042 reim0 11045 mulreap 11048 rere 11049 remul2 11057 redivap 11058 immul2 11064 imdivap 11065 cjre 11066 cjreim 11087 rennim 11186 sqrt0rlem 11187 resqrexlemover 11194 absreimsq 11251 absreim 11252 absnid 11257 leabs 11258 absre 11261 absresq 11262 sqabs 11266 ltabs 11271 absdiflt 11276 absdifle 11277 lenegsq 11279 abssuble0 11287 dfabsmax 11401 max0addsup 11403 negfi 11412 minclpr 11421 reefcl 11852 efgt0 11868 reeftlcl 11873 resinval 11899 recosval 11900 resin4p 11902 recos4p 11903 resincl 11904 recoscl 11905 retanclap 11906 efieq 11919 sinbnd 11936 cosbnd 11937 absefi 11953 odd2np1 12057 remetdval 14891 bl2ioo 14894 ioo2bl 14895 hoverb 14992 plyreres 15108 sincosq1sgn 15170 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 sinq12gt0 15174 relogoprlem 15212 logcxp 15241 rpcxpcl 15247 cxpcom 15282 rprelogbdiv 15301 gausslemma2dlem1a 15407 triap 15786 trirec0 15801 |
| Copyright terms: Public domain | W3C validator |