Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recn | GIF version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7841 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | 1 | sseli 3137 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7747 ℝcr 7748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: mulid1 7892 recnd 7923 pnfnre 7936 mnfnre 7937 cnegexlem1 8069 cnegexlem2 8070 cnegexlem3 8071 cnegex 8072 renegcl 8155 resubcl 8158 negf1o 8276 mul02lem2 8282 ltaddneg 8318 ltaddnegr 8319 ltaddsub2 8331 leaddsub2 8333 leltadd 8341 ltaddpos 8346 ltaddpos2 8347 posdif 8349 lenegcon1 8360 lenegcon2 8361 addge01 8366 addge02 8367 leaddle0 8371 mullt0 8374 recexre 8472 msqge0 8510 mulge0 8513 aprcl 8540 recexap 8546 ltm1 8737 prodgt02 8744 prodge02 8746 ltmul2 8747 lemul2 8748 lemul2a 8750 ltmulgt12 8756 lemulge12 8758 gt0div 8761 ge0div 8762 ltmuldiv2 8766 ltdivmul 8767 ltdivmul2 8769 ledivmul2 8771 lemuldiv2 8773 negiso 8846 cju 8852 nnge1 8876 halfpos 9084 lt2halves 9088 addltmul 9089 avgle1 9093 avgle2 9094 div4p1lem1div2 9106 nnrecl 9108 elznn0 9202 elznn 9203 nzadd 9239 zmulcl 9240 difgtsumgt 9256 elz2 9258 gtndiv 9282 zeo 9292 supminfex 9531 eqreznegel 9548 negm 9549 irradd 9580 irrmul 9581 divlt1lt 9656 divle1le 9657 xnegneg 9765 rexsub 9785 xnegid 9791 xaddcom 9793 xaddid1 9794 xnegdi 9800 xaddass 9801 xleaddadd 9819 divelunit 9934 fzonmapblen 10118 expgt1 10489 mulexpzap 10491 leexp1a 10506 expubnd 10508 sqgt0ap 10519 lt2sq 10524 le2sq 10525 sqge0 10527 sumsqeq0 10529 bernneq 10571 bernneq2 10572 nn0ltexp2 10619 crre 10795 crim 10796 reim0 10799 mulreap 10802 rere 10803 remul2 10811 redivap 10812 immul2 10818 imdivap 10819 cjre 10820 cjreim 10841 rennim 10940 sqrt0rlem 10941 resqrexlemover 10948 absreimsq 11005 absreim 11006 absnid 11011 leabs 11012 absre 11015 absresq 11016 sqabs 11020 ltabs 11025 absdiflt 11030 absdifle 11031 lenegsq 11033 abssuble0 11041 dfabsmax 11155 max0addsup 11157 negfi 11165 minclpr 11174 reefcl 11605 efgt0 11621 reeftlcl 11626 resinval 11652 recosval 11653 resin4p 11655 recos4p 11656 resincl 11657 recoscl 11658 retanclap 11659 efieq 11672 sinbnd 11689 cosbnd 11690 absefi 11705 odd2np1 11806 infssuzex 11878 remetdval 13139 bl2ioo 13142 ioo2bl 13143 sincosq1sgn 13347 sincosq2sgn 13348 sincosq3sgn 13349 sincosq4sgn 13350 sinq12gt0 13351 relogoprlem 13389 logcxp 13418 rpcxpcl 13424 cxpcom 13457 rprelogbdiv 13475 triap 13868 trirec0 13883 |
Copyright terms: Public domain | W3C validator |