| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recn | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-resscn 7971 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | sseli 3179 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 ℝcr 7878 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: mulrid 8023 recnd 8055 pnfnre 8068 mnfnre 8069 cnegexlem1 8201 cnegexlem2 8202 cnegexlem3 8203 cnegex 8204 renegcl 8287 resubcl 8290 negf1o 8408 mul02lem2 8414 ltaddneg 8451 ltaddnegr 8452 ltaddsub2 8464 leaddsub2 8466 leltadd 8474 ltaddpos 8479 ltaddpos2 8480 posdif 8482 lenegcon1 8493 lenegcon2 8494 addge01 8499 addge02 8500 leaddle0 8504 mullt0 8507 recexre 8605 msqge0 8643 mulge0 8646 aprcl 8673 recexap 8680 rerecapb 8870 ltm1 8873 prodgt02 8880 prodge02 8882 ltmul2 8883 lemul2 8884 lemul2a 8886 ltmulgt12 8892 lemulge12 8894 gt0div 8897 ge0div 8898 ltmuldiv2 8902 ltdivmul 8903 ltdivmul2 8905 ledivmul2 8907 lemuldiv2 8909 negiso 8982 cju 8988 nnge1 9013 halfpos 9222 lt2halves 9227 addltmul 9228 avgle1 9232 avgle2 9233 div4p1lem1div2 9245 nnrecl 9247 elznn0 9341 elznn 9342 nzadd 9378 zmulcl 9379 difgtsumgt 9395 elz2 9397 gtndiv 9421 zeo 9431 supminfex 9671 eqreznegel 9688 negm 9689 irradd 9720 irrmul 9721 divlt1lt 9799 divle1le 9800 xnegneg 9908 rexsub 9928 xnegid 9934 xaddcom 9936 xaddid1 9937 xnegdi 9943 xaddass 9944 xleaddadd 9962 divelunit 10077 fzonmapblen 10263 infssuzex 10323 expgt1 10669 mulexpzap 10671 leexp1a 10686 expubnd 10688 sqgt0ap 10700 lt2sq 10705 le2sq 10706 sqge0 10708 sumsqeq0 10710 bernneq 10752 bernneq2 10753 nn0ltexp2 10801 crre 11022 crim 11023 reim0 11026 mulreap 11029 rere 11030 remul2 11038 redivap 11039 immul2 11045 imdivap 11046 cjre 11047 cjreim 11068 rennim 11167 sqrt0rlem 11168 resqrexlemover 11175 absreimsq 11232 absreim 11233 absnid 11238 leabs 11239 absre 11242 absresq 11243 sqabs 11247 ltabs 11252 absdiflt 11257 absdifle 11258 lenegsq 11260 abssuble0 11268 dfabsmax 11382 max0addsup 11384 negfi 11393 minclpr 11402 reefcl 11833 efgt0 11849 reeftlcl 11854 resinval 11880 recosval 11881 resin4p 11883 recos4p 11884 resincl 11885 recoscl 11886 retanclap 11887 efieq 11900 sinbnd 11917 cosbnd 11918 absefi 11934 odd2np1 12038 remetdval 14783 bl2ioo 14786 ioo2bl 14787 hoverb 14884 plyreres 15000 sincosq1sgn 15062 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 sinq12gt0 15066 relogoprlem 15104 logcxp 15133 rpcxpcl 15139 cxpcom 15174 rprelogbdiv 15193 gausslemma2dlem1a 15299 triap 15673 trirec0 15688 | 
| Copyright terms: Public domain | W3C validator |