| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 7988 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7894 ℝcr 7895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: mulrid 8040 recnd 8072 pnfnre 8085 mnfnre 8086 cnegexlem1 8218 cnegexlem2 8219 cnegexlem3 8220 cnegex 8221 renegcl 8304 resubcl 8307 negf1o 8425 mul02lem2 8431 ltaddneg 8468 ltaddnegr 8469 ltaddsub2 8481 leaddsub2 8483 leltadd 8491 ltaddpos 8496 ltaddpos2 8497 posdif 8499 lenegcon1 8510 lenegcon2 8511 addge01 8516 addge02 8517 leaddle0 8521 mullt0 8524 recexre 8622 msqge0 8660 mulge0 8663 aprcl 8690 recexap 8697 rerecapb 8887 ltm1 8890 prodgt02 8897 prodge02 8899 ltmul2 8900 lemul2 8901 lemul2a 8903 ltmulgt12 8909 lemulge12 8911 gt0div 8914 ge0div 8915 ltmuldiv2 8919 ltdivmul 8920 ltdivmul2 8922 ledivmul2 8924 lemuldiv2 8926 negiso 8999 cju 9005 nnge1 9030 halfpos 9239 lt2halves 9244 addltmul 9245 avgle1 9249 avgle2 9250 div4p1lem1div2 9262 nnrecl 9264 elznn0 9358 elznn 9359 nzadd 9395 zmulcl 9396 difgtsumgt 9412 elz2 9414 gtndiv 9438 zeo 9448 supminfex 9688 eqreznegel 9705 negm 9706 irradd 9737 irrmul 9738 divlt1lt 9816 divle1le 9817 xnegneg 9925 rexsub 9945 xnegid 9951 xaddcom 9953 xaddid1 9954 xnegdi 9960 xaddass 9961 xleaddadd 9979 divelunit 10094 fzonmapblen 10280 infssuzex 10340 expgt1 10686 mulexpzap 10688 leexp1a 10703 expubnd 10705 sqgt0ap 10717 lt2sq 10722 le2sq 10723 sqge0 10725 sumsqeq0 10727 bernneq 10769 bernneq2 10770 nn0ltexp2 10818 crre 11039 crim 11040 reim0 11043 mulreap 11046 rere 11047 remul2 11055 redivap 11056 immul2 11062 imdivap 11063 cjre 11064 cjreim 11085 rennim 11184 sqrt0rlem 11185 resqrexlemover 11192 absreimsq 11249 absreim 11250 absnid 11255 leabs 11256 absre 11259 absresq 11260 sqabs 11264 ltabs 11269 absdiflt 11274 absdifle 11275 lenegsq 11277 abssuble0 11285 dfabsmax 11399 max0addsup 11401 negfi 11410 minclpr 11419 reefcl 11850 efgt0 11866 reeftlcl 11871 resinval 11897 recosval 11898 resin4p 11900 recos4p 11901 resincl 11902 recoscl 11903 retanclap 11904 efieq 11917 sinbnd 11934 cosbnd 11935 absefi 11951 odd2np1 12055 remetdval 14867 bl2ioo 14870 ioo2bl 14871 hoverb 14968 plyreres 15084 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 sinq12gt0 15150 relogoprlem 15188 logcxp 15217 rpcxpcl 15223 cxpcom 15258 rprelogbdiv 15277 gausslemma2dlem1a 15383 triap 15760 trirec0 15775 |
| Copyright terms: Public domain | W3C validator |