| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | GIF version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8099 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℂcc 8005 ℝcr 8006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: mulrid 8151 recnd 8183 pnfnre 8196 mnfnre 8197 cnegexlem1 8329 cnegexlem2 8330 cnegexlem3 8331 cnegex 8332 renegcl 8415 resubcl 8418 negf1o 8536 mul02lem2 8542 ltaddneg 8579 ltaddnegr 8580 ltaddsub2 8592 leaddsub2 8594 leltadd 8602 ltaddpos 8607 ltaddpos2 8608 posdif 8610 lenegcon1 8621 lenegcon2 8622 addge01 8627 addge02 8628 leaddle0 8632 mullt0 8635 recexre 8733 msqge0 8771 mulge0 8774 aprcl 8801 recexap 8808 rerecapb 8998 ltm1 9001 prodgt02 9008 prodge02 9010 ltmul2 9011 lemul2 9012 lemul2a 9014 ltmulgt12 9020 lemulge12 9022 gt0div 9025 ge0div 9026 ltmuldiv2 9030 ltdivmul 9031 ltdivmul2 9033 ledivmul2 9035 lemuldiv2 9037 negiso 9110 cju 9116 nnge1 9141 halfpos 9350 lt2halves 9355 addltmul 9356 avgle1 9360 avgle2 9361 div4p1lem1div2 9373 nnrecl 9375 elznn0 9469 elznn 9470 nzadd 9507 zmulcl 9508 difgtsumgt 9524 elz2 9526 gtndiv 9550 zeo 9560 supminfex 9800 eqreznegel 9817 negm 9818 irradd 9849 irrmul 9850 divlt1lt 9928 divle1le 9929 xnegneg 10037 rexsub 10057 xnegid 10063 xaddcom 10065 xaddid1 10066 xnegdi 10072 xaddass 10073 xleaddadd 10091 divelunit 10206 fzonmapblen 10395 infssuzex 10461 expgt1 10807 mulexpzap 10809 leexp1a 10824 expubnd 10826 sqgt0ap 10838 lt2sq 10843 le2sq 10844 sqge0 10846 sumsqeq0 10848 bernneq 10890 bernneq2 10891 nn0ltexp2 10939 swrdccatin2 11269 swrdccat3blem 11279 crre 11376 crim 11377 reim0 11380 mulreap 11383 rere 11384 remul2 11392 redivap 11393 immul2 11399 imdivap 11400 cjre 11401 cjreim 11422 rennim 11521 sqrt0rlem 11522 resqrexlemover 11529 absreimsq 11586 absreim 11587 absnid 11592 leabs 11593 absre 11596 absresq 11597 sqabs 11601 ltabs 11606 absdiflt 11611 absdifle 11612 lenegsq 11614 abssuble0 11622 dfabsmax 11736 max0addsup 11738 negfi 11747 minclpr 11756 reefcl 12187 efgt0 12203 reeftlcl 12208 resinval 12234 recosval 12235 resin4p 12237 recos4p 12238 resincl 12239 recoscl 12240 retanclap 12241 efieq 12254 sinbnd 12271 cosbnd 12272 absefi 12288 odd2np1 12392 remetdval 15229 bl2ioo 15232 ioo2bl 15233 hoverb 15330 plyreres 15446 sincosq1sgn 15508 sincosq2sgn 15509 sincosq3sgn 15510 sincosq4sgn 15511 sinq12gt0 15512 relogoprlem 15550 logcxp 15579 rpcxpcl 15585 cxpcom 15620 rprelogbdiv 15639 gausslemma2dlem1a 15745 triap 16427 trirec0 16442 |
| Copyright terms: Public domain | W3C validator |