ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efi4p GIF version

Theorem efi4p 11760
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efi4p (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 7937 . . . 4 i ∈ ℂ
2 mulcl 7969 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 424 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efi4p.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
54ef4p 11737 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
63, 5syl 14 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
7 ax-1cn 7935 . . . . . 6 1 ∈ ℂ
8 addcl 7967 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
97, 3, 8sylancr 414 . . . . 5 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
103sqcld 10686 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ∈ ℂ)
1110halfcld 9194 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) ∈ ℂ)
12 3nn0 9225 . . . . . . 7 3 ∈ ℕ0
13 expcl 10572 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) ∈ ℂ)
143, 12, 13sylancl 413 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) ∈ ℂ)
15 6cn 9032 . . . . . . 7 6 ∈ ℂ
16 6re 9031 . . . . . . . 8 6 ∈ ℝ
17 6pos 9051 . . . . . . . 8 0 < 6
1816, 17gt0ap0ii 8616 . . . . . . 7 6 # 0
19 divclap 8666 . . . . . . 7 ((((i · 𝐴)↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2015, 18, 19mp3an23 1340 . . . . . 6 (((i · 𝐴)↑3) ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2114, 20syl 14 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
229, 11, 21addassd 8011 . . . 4 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))))
237a1i 9 . . . . 5 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2423, 3, 11, 21add4d 8157 . . . 4 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))) = ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))))
25 2nn0 9224 . . . . . . . . . . 11 2 ∈ ℕ0
26 mulexp 10593 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
271, 25, 26mp3an13 1339 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
28 i2 10655 . . . . . . . . . . . 12 (i↑2) = -1
2928oveq1i 5907 . . . . . . . . . . 11 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
3029a1i 9 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)))
31 sqcl 10615 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
3231mulm1d 8398 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
3327, 30, 323eqtrd 2226 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
3433oveq1d 5912 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = (-(𝐴↑2) / 2))
35 2cn 9021 . . . . . . . . . 10 2 ∈ ℂ
36 2ap0 9043 . . . . . . . . . 10 2 # 0
37 divnegap 8694 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3835, 36, 37mp3an23 1340 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3931, 38syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
4034, 39eqtr4d 2225 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = -((𝐴↑2) / 2))
4140oveq2d 5913 . . . . . 6 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 + -((𝐴↑2) / 2)))
4231halfcld 9194 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
43 negsub 8236 . . . . . . 7 ((1 ∈ ℂ ∧ ((𝐴↑2) / 2) ∈ ℂ) → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
447, 42, 43sylancr 414 . . . . . 6 (𝐴 ∈ ℂ → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
4541, 44eqtrd 2222 . . . . 5 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
46 mulexp 10593 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
471, 12, 46mp3an13 1339 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
48 i3 10656 . . . . . . . . . . 11 (i↑3) = -i
4948oveq1i 5907 . . . . . . . . . 10 ((i↑3) · (𝐴↑3)) = (-i · (𝐴↑3))
5047, 49eqtrdi 2238 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = (-i · (𝐴↑3)))
5150oveq1d 5912 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = ((-i · (𝐴↑3)) / 6))
52 expcl 10572 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
5312, 52mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑3) ∈ ℂ)
54 negicn 8189 . . . . . . . . . 10 -i ∈ ℂ
5515, 18pm3.2i 272 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 # 0)
56 divassap 8678 . . . . . . . . . 10 ((-i ∈ ℂ ∧ (𝐴↑3) ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0)) → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5754, 55, 56mp3an13 1339 . . . . . . . . 9 ((𝐴↑3) ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5853, 57syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
59 divclap 8666 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℂ)
6015, 18, 59mp3an23 1340 . . . . . . . . . 10 ((𝐴↑3) ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
6153, 60syl 14 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
62 mulneg12 8385 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
631, 61, 62sylancr 414 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
6451, 58, 633eqtrd 2226 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = (i · -((𝐴↑3) / 6)))
6564oveq2d 5913 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6661negcld 8286 . . . . . . 7 (𝐴 ∈ ℂ → -((𝐴↑3) / 6) ∈ ℂ)
67 adddi 7974 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
681, 67mp3an1 1335 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6966, 68mpdan 421 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
70 negsub 8236 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7161, 70mpdan 421 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7271oveq2d 5913 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = (i · (𝐴 − ((𝐴↑3) / 6))))
7365, 69, 723eqtr2d 2228 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = (i · (𝐴 − ((𝐴↑3) / 6))))
7445, 73oveq12d 5915 . . . 4 (𝐴 ∈ ℂ → ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7522, 24, 743eqtrd 2226 . . 3 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7675oveq1d 5912 . 2 (𝐴 ∈ ℂ → ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
776, 76eqtrd 2222 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  cmpt 4079  cfv 5235  (class class class)co 5897  cc 7840  0cc0 7842  1c1 7843  ici 7844   + caddc 7845   · cmul 7847  cmin 8159  -cneg 8160   # cap 8569   / cdiv 8660  2c2 9001  3c3 9002  4c4 9003  6c6 9005  0cn0 9207  cuz 9559  cexp 10553  !cfa 10740  Σcsu 11396  expce 11685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-ico 9926  df-fz 10041  df-fzo 10175  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691
This theorem is referenced by:  resin4p  11761  recos4p  11762
  Copyright terms: Public domain W3C validator