ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efi4p GIF version

Theorem efi4p 11882
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efi4p (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 7974 . . . 4 i ∈ ℂ
2 mulcl 8006 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 424 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efi4p.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
54ef4p 11859 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
63, 5syl 14 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
7 ax-1cn 7972 . . . . . 6 1 ∈ ℂ
8 addcl 8004 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
97, 3, 8sylancr 414 . . . . 5 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
103sqcld 10763 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ∈ ℂ)
1110halfcld 9236 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) ∈ ℂ)
12 3nn0 9267 . . . . . . 7 3 ∈ ℕ0
13 expcl 10649 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) ∈ ℂ)
143, 12, 13sylancl 413 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) ∈ ℂ)
15 6cn 9072 . . . . . . 7 6 ∈ ℂ
16 6re 9071 . . . . . . . 8 6 ∈ ℝ
17 6pos 9091 . . . . . . . 8 0 < 6
1816, 17gt0ap0ii 8655 . . . . . . 7 6 # 0
19 divclap 8705 . . . . . . 7 ((((i · 𝐴)↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2015, 18, 19mp3an23 1340 . . . . . 6 (((i · 𝐴)↑3) ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2114, 20syl 14 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
229, 11, 21addassd 8049 . . . 4 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))))
237a1i 9 . . . . 5 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2423, 3, 11, 21add4d 8195 . . . 4 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))) = ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))))
25 2nn0 9266 . . . . . . . . . . 11 2 ∈ ℕ0
26 mulexp 10670 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
271, 25, 26mp3an13 1339 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
28 i2 10732 . . . . . . . . . . . 12 (i↑2) = -1
2928oveq1i 5932 . . . . . . . . . . 11 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
3029a1i 9 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)))
31 sqcl 10692 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
3231mulm1d 8436 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
3327, 30, 323eqtrd 2233 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
3433oveq1d 5937 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = (-(𝐴↑2) / 2))
35 2cn 9061 . . . . . . . . . 10 2 ∈ ℂ
36 2ap0 9083 . . . . . . . . . 10 2 # 0
37 divnegap 8733 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3835, 36, 37mp3an23 1340 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3931, 38syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
4034, 39eqtr4d 2232 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = -((𝐴↑2) / 2))
4140oveq2d 5938 . . . . . 6 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 + -((𝐴↑2) / 2)))
4231halfcld 9236 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
43 negsub 8274 . . . . . . 7 ((1 ∈ ℂ ∧ ((𝐴↑2) / 2) ∈ ℂ) → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
447, 42, 43sylancr 414 . . . . . 6 (𝐴 ∈ ℂ → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
4541, 44eqtrd 2229 . . . . 5 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
46 mulexp 10670 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
471, 12, 46mp3an13 1339 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
48 i3 10733 . . . . . . . . . . 11 (i↑3) = -i
4948oveq1i 5932 . . . . . . . . . 10 ((i↑3) · (𝐴↑3)) = (-i · (𝐴↑3))
5047, 49eqtrdi 2245 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = (-i · (𝐴↑3)))
5150oveq1d 5937 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = ((-i · (𝐴↑3)) / 6))
52 expcl 10649 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
5312, 52mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑3) ∈ ℂ)
54 negicn 8227 . . . . . . . . . 10 -i ∈ ℂ
5515, 18pm3.2i 272 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 # 0)
56 divassap 8717 . . . . . . . . . 10 ((-i ∈ ℂ ∧ (𝐴↑3) ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 # 0)) → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5754, 55, 56mp3an13 1339 . . . . . . . . 9 ((𝐴↑3) ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5853, 57syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
59 divclap 8705 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → ((𝐴↑3) / 6) ∈ ℂ)
6015, 18, 59mp3an23 1340 . . . . . . . . . 10 ((𝐴↑3) ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
6153, 60syl 14 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
62 mulneg12 8423 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
631, 61, 62sylancr 414 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
6451, 58, 633eqtrd 2233 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = (i · -((𝐴↑3) / 6)))
6564oveq2d 5938 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6661negcld 8324 . . . . . . 7 (𝐴 ∈ ℂ → -((𝐴↑3) / 6) ∈ ℂ)
67 adddi 8011 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
681, 67mp3an1 1335 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6966, 68mpdan 421 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
70 negsub 8274 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7161, 70mpdan 421 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7271oveq2d 5938 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = (i · (𝐴 − ((𝐴↑3) / 6))))
7365, 69, 723eqtr2d 2235 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = (i · (𝐴 − ((𝐴↑3) / 6))))
7445, 73oveq12d 5940 . . . 4 (𝐴 ∈ ℂ → ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7522, 24, 743eqtrd 2233 . . 3 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7675oveq1d 5937 . 2 (𝐴 ∈ ℂ → ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
776, 76eqtrd 2229 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880  ici 7881   + caddc 7882   · cmul 7884  cmin 8197  -cneg 8198   # cap 8608   / cdiv 8699  2c2 9041  3c3 9042  4c4 9043  6c6 9045  0cn0 9249  cuz 9601  cexp 10630  !cfa 10817  Σcsu 11518  expce 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813
This theorem is referenced by:  resin4p  11883  recos4p  11884
  Copyright terms: Public domain W3C validator