![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cos2tsin | GIF version |
Description: Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
Ref | Expression |
---|---|
cos2tsin | ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cos2t 11772 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | |
2 | sincl 11728 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
3 | 2 | sqcld 10666 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
4 | coscl 11729 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
5 | 4 | sqcld 10666 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
6 | 2cn 9004 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
7 | adddi 7957 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) | |
8 | 6, 7 | mp3an1 1334 | . . . . . . 7 ⊢ ((((sin‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) |
9 | 3, 5, 8 | syl2anc 411 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) |
10 | sincossq 11770 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
11 | 10 | oveq2d 5904 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = (2 · 1)) |
12 | 9, 11 | eqtr3d 2222 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = (2 · 1)) |
13 | 2t1e2 9086 | . . . . 5 ⊢ (2 · 1) = 2 | |
14 | 12, 13 | eqtrdi 2236 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2) |
15 | mulcl 7952 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) | |
16 | 6, 3, 15 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) |
17 | mulcl 7952 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) | |
18 | 6, 5, 17 | sylancr 414 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) |
19 | subadd 8174 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ (2 · ((cos‘𝐴)↑2)) ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) | |
20 | 6, 19 | mp3an1 1334 | . . . . 5 ⊢ (((2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ (2 · ((cos‘𝐴)↑2)) ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) |
21 | 16, 18, 20 | syl2anc 411 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) |
22 | 14, 21 | mpbird 167 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2))) |
23 | 22 | oveq1d 5903 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
24 | ax-1cn 7918 | . . . . 5 ⊢ 1 ∈ ℂ | |
25 | sub32 8205 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) | |
26 | 6, 24, 25 | mp3an13 1338 | . . . 4 ⊢ ((2 · ((sin‘𝐴)↑2)) ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
27 | 16, 26 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
28 | 2m1e1 9051 | . . . 4 ⊢ (2 − 1) = 1 | |
29 | 28 | oveq1i 5898 | . . 3 ⊢ ((2 − 1) − (2 · ((sin‘𝐴)↑2))) = (1 − (2 · ((sin‘𝐴)↑2))) |
30 | 27, 29 | eqtrdi 2236 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = (1 − (2 · ((sin‘𝐴)↑2)))) |
31 | 1, 23, 30 | 3eqtr2d 2226 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 1c1 7826 + caddc 7828 · cmul 7830 − cmin 8142 2c2 8984 ↑cexp 10533 sincsin 11666 cosccos 11667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-disj 3993 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-en 6755 df-dom 6756 df-fin 6757 df-sup 6997 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-ico 9908 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-fac 10720 df-bc 10742 df-ihash 10770 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 df-ef 11670 df-sin 11672 df-cos 11673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |