Step | Hyp | Ref
| Expression |
1 | | cos2t 11760 |
. 2
β’ (π΄ β β β
(cosβ(2 Β· π΄))
= ((2 Β· ((cosβπ΄)β2)) β 1)) |
2 | | sincl 11716 |
. . . . . . . 8
β’ (π΄ β β β
(sinβπ΄) β
β) |
3 | 2 | sqcld 10654 |
. . . . . . 7
β’ (π΄ β β β
((sinβπ΄)β2)
β β) |
4 | | coscl 11717 |
. . . . . . . 8
β’ (π΄ β β β
(cosβπ΄) β
β) |
5 | 4 | sqcld 10654 |
. . . . . . 7
β’ (π΄ β β β
((cosβπ΄)β2)
β β) |
6 | | 2cn 8992 |
. . . . . . . 8
β’ 2 β
β |
7 | | adddi 7945 |
. . . . . . . 8
β’ ((2
β β β§ ((sinβπ΄)β2) β β β§
((cosβπ΄)β2)
β β) β (2 Β· (((sinβπ΄)β2) + ((cosβπ΄)β2))) = ((2 Β· ((sinβπ΄)β2)) + (2 Β·
((cosβπ΄)β2)))) |
8 | 6, 7 | mp3an1 1324 |
. . . . . . 7
β’
((((sinβπ΄)β2) β β β§
((cosβπ΄)β2)
β β) β (2 Β· (((sinβπ΄)β2) + ((cosβπ΄)β2))) = ((2 Β· ((sinβπ΄)β2)) + (2 Β·
((cosβπ΄)β2)))) |
9 | 3, 5, 8 | syl2anc 411 |
. . . . . 6
β’ (π΄ β β β (2
Β· (((sinβπ΄)β2) + ((cosβπ΄)β2))) = ((2 Β· ((sinβπ΄)β2)) + (2 Β·
((cosβπ΄)β2)))) |
10 | | sincossq 11758 |
. . . . . . 7
β’ (π΄ β β β
(((sinβπ΄)β2) +
((cosβπ΄)β2)) =
1) |
11 | 10 | oveq2d 5893 |
. . . . . 6
β’ (π΄ β β β (2
Β· (((sinβπ΄)β2) + ((cosβπ΄)β2))) = (2 Β·
1)) |
12 | 9, 11 | eqtr3d 2212 |
. . . . 5
β’ (π΄ β β β ((2
Β· ((sinβπ΄)β2)) + (2 Β· ((cosβπ΄)β2))) = (2 Β·
1)) |
13 | | 2t1e2 9074 |
. . . . 5
β’ (2
Β· 1) = 2 |
14 | 12, 13 | eqtrdi 2226 |
. . . 4
β’ (π΄ β β β ((2
Β· ((sinβπ΄)β2)) + (2 Β· ((cosβπ΄)β2))) =
2) |
15 | | mulcl 7940 |
. . . . . 6
β’ ((2
β β β§ ((sinβπ΄)β2) β β) β (2 Β·
((sinβπ΄)β2))
β β) |
16 | 6, 3, 15 | sylancr 414 |
. . . . 5
β’ (π΄ β β β (2
Β· ((sinβπ΄)β2)) β β) |
17 | | mulcl 7940 |
. . . . . 6
β’ ((2
β β β§ ((cosβπ΄)β2) β β) β (2 Β·
((cosβπ΄)β2))
β β) |
18 | 6, 5, 17 | sylancr 414 |
. . . . 5
β’ (π΄ β β β (2
Β· ((cosβπ΄)β2)) β β) |
19 | | subadd 8162 |
. . . . . 6
β’ ((2
β β β§ (2 Β· ((sinβπ΄)β2)) β β β§ (2 Β·
((cosβπ΄)β2))
β β) β ((2 β (2 Β· ((sinβπ΄)β2))) = (2 Β· ((cosβπ΄)β2)) β ((2 Β·
((sinβπ΄)β2)) +
(2 Β· ((cosβπ΄)β2))) = 2)) |
20 | 6, 19 | mp3an1 1324 |
. . . . 5
β’ (((2
Β· ((sinβπ΄)β2)) β β β§ (2 Β·
((cosβπ΄)β2))
β β) β ((2 β (2 Β· ((sinβπ΄)β2))) = (2 Β· ((cosβπ΄)β2)) β ((2 Β·
((sinβπ΄)β2)) +
(2 Β· ((cosβπ΄)β2))) = 2)) |
21 | 16, 18, 20 | syl2anc 411 |
. . . 4
β’ (π΄ β β β ((2
β (2 Β· ((sinβπ΄)β2))) = (2 Β· ((cosβπ΄)β2)) β ((2 Β·
((sinβπ΄)β2)) +
(2 Β· ((cosβπ΄)β2))) = 2)) |
22 | 14, 21 | mpbird 167 |
. . 3
β’ (π΄ β β β (2
β (2 Β· ((sinβπ΄)β2))) = (2 Β· ((cosβπ΄)β2))) |
23 | 22 | oveq1d 5892 |
. 2
β’ (π΄ β β β ((2
β (2 Β· ((sinβπ΄)β2))) β 1) = ((2 Β·
((cosβπ΄)β2))
β 1)) |
24 | | ax-1cn 7906 |
. . . . 5
β’ 1 β
β |
25 | | sub32 8193 |
. . . . 5
β’ ((2
β β β§ (2 Β· ((sinβπ΄)β2)) β β β§ 1 β
β) β ((2 β (2 Β· ((sinβπ΄)β2))) β 1) = ((2 β 1)
β (2 Β· ((sinβπ΄)β2)))) |
26 | 6, 24, 25 | mp3an13 1328 |
. . . 4
β’ ((2
Β· ((sinβπ΄)β2)) β β β ((2 β
(2 Β· ((sinβπ΄)β2))) β 1) = ((2 β 1)
β (2 Β· ((sinβπ΄)β2)))) |
27 | 16, 26 | syl 14 |
. . 3
β’ (π΄ β β β ((2
β (2 Β· ((sinβπ΄)β2))) β 1) = ((2 β 1)
β (2 Β· ((sinβπ΄)β2)))) |
28 | | 2m1e1 9039 |
. . . 4
β’ (2
β 1) = 1 |
29 | 28 | oveq1i 5887 |
. . 3
β’ ((2
β 1) β (2 Β· ((sinβπ΄)β2))) = (1 β (2 Β·
((sinβπ΄)β2))) |
30 | 27, 29 | eqtrdi 2226 |
. 2
β’ (π΄ β β β ((2
β (2 Β· ((sinβπ΄)β2))) β 1) = (1 β (2
Β· ((sinβπ΄)β2)))) |
31 | 1, 23, 30 | 3eqtr2d 2216 |
1
β’ (π΄ β β β
(cosβ(2 Β· π΄))
= (1 β (2 Β· ((sinβπ΄)β2)))) |