ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem12 GIF version

Theorem pythagtriplem12 12277
Description: Lemma for pythagtrip 12285. Calculate the square of ๐‘€. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem11.1 ๐‘€ = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
Assertion
Ref Expression
pythagtriplem12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐‘€โ†‘2) = ((๐ถ + ๐ด) / 2))

Proof of Theorem pythagtriplem12
StepHypRef Expression
1 pythagtriplem11.1 . . 3 ๐‘€ = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
21oveq1i 5887 . 2 (๐‘€โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2)
3 simp3 999 . . . . . . . . . 10 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„•)
4 simp2 998 . . . . . . . . . 10 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„•)
53, 4nnaddcld 8969 . . . . . . . . 9 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„•)
65nnrpd 9696 . . . . . . . 8 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„+)
76rpsqrtcld 11169 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„+)
87rpcnd 9700 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„‚)
983ad2ant1 1018 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„‚)
103nnred 8934 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„)
1110adantr 276 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ ๐ถ โˆˆ โ„)
124nnred 8934 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„)
1312adantr 276 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ ๐ต โˆˆ โ„)
1411, 13resubcld 8340 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
15 pythagtriplem10 12271 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ 0 < (๐ถ โˆ’ ๐ต))
1614, 15elrpd 9695 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„+)
1716rpsqrtcld 11169 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„+)
18173adant3 1017 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„+)
1918rpcnd 9700 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„‚)
209, 19addcld 7979 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚)
21 2cn 8992 . . . . . 6 2 โˆˆ โ„‚
22 2ap0 9014 . . . . . 6 2 # 0
23 sqdivap 10586 . . . . . 6 ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚ โˆง 2 # 0) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2โ†‘2)))
2421, 22, 23mp3an23 1329 . . . . 5 (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚ โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2โ†‘2)))
2521sqvali 10602 . . . . . 6 (2โ†‘2) = (2 ยท 2)
2625oveq2i 5888 . . . . 5 ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2โ†‘2)) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2 ยท 2))
2724, 26eqtrdi 2226 . . . 4 (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚ โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2 ยท 2)))
2820, 27syl 14 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2 ยท 2)))
29 binom2 10634 . . . . . . 7 (((โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„‚ โˆง (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„‚) โ†’ (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) + ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)))
309, 19, 29syl2anc 411 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) = ((((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) + ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)))
31 nnre 8928 . . . . . . . . . . . 12 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„)
32 nnre 8928 . . . . . . . . . . . 12 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„)
33 readdcl 7939 . . . . . . . . . . . 12 ((๐ถ โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
3431, 32, 33syl2anr 290 . . . . . . . . . . 11 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
35343adant1 1015 . . . . . . . . . 10 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
36353ad2ant1 1018 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
37313ad2ant3 1020 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„)
38323ad2ant2 1019 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„)
39 nngt0 8946 . . . . . . . . . . . . 13 (๐ถ โˆˆ โ„• โ†’ 0 < ๐ถ)
40393ad2ant3 1020 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 < ๐ถ)
41 nngt0 8946 . . . . . . . . . . . . 13 (๐ต โˆˆ โ„• โ†’ 0 < ๐ต)
42413ad2ant2 1019 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 < ๐ต)
4337, 38, 40, 42addgt0d 8480 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 < (๐ถ + ๐ต))
44433ad2ant1 1018 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 < (๐ถ + ๐ต))
45 0re 7959 . . . . . . . . . . 11 0 โˆˆ โ„
46 ltle 8047 . . . . . . . . . . 11 ((0 โˆˆ โ„ โˆง (๐ถ + ๐ต) โˆˆ โ„) โ†’ (0 < (๐ถ + ๐ต) โ†’ 0 โ‰ค (๐ถ + ๐ต)))
4745, 46mpan 424 . . . . . . . . . 10 ((๐ถ + ๐ต) โˆˆ โ„ โ†’ (0 < (๐ถ + ๐ต) โ†’ 0 โ‰ค (๐ถ + ๐ต)))
4836, 44, 47sylc 62 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 โ‰ค (๐ถ + ๐ต))
49 resqrtth 11042 . . . . . . . . 9 (((๐ถ + ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ถ + ๐ต)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) = (๐ถ + ๐ต))
5036, 48, 49syl2anc 411 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) = (๐ถ + ๐ต))
5150oveq1d 5892 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) = ((๐ถ + ๐ต) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))))
52 resubcl 8223 . . . . . . . . . . 11 ((๐ถ โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
5331, 32, 52syl2anr 290 . . . . . . . . . 10 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
54533adant1 1015 . . . . . . . . 9 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
55543ad2ant1 1018 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
56153adant3 1017 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 < (๐ถ โˆ’ ๐ต))
57 ltle 8047 . . . . . . . . . 10 ((0 โˆˆ โ„ โˆง (๐ถ โˆ’ ๐ต) โˆˆ โ„) โ†’ (0 < (๐ถ โˆ’ ๐ต) โ†’ 0 โ‰ค (๐ถ โˆ’ ๐ต)))
5845, 57mpan 424 . . . . . . . . 9 ((๐ถ โˆ’ ๐ต) โˆˆ โ„ โ†’ (0 < (๐ถ โˆ’ ๐ต) โ†’ 0 โ‰ค (๐ถ โˆ’ ๐ต)))
5955, 56, 58sylc 62 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 โ‰ค (๐ถ โˆ’ ๐ต))
60 resqrtth 11042 . . . . . . . 8 (((๐ถ โˆ’ ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ถ โˆ’ ๐ต)) โ†’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2) = (๐ถ โˆ’ ๐ต))
6155, 59, 60syl2anc 411 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2) = (๐ถ โˆ’ ๐ต))
6251, 61oveq12d 5895 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) + ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)) = (((๐ถ + ๐ต) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) + (๐ถ โˆ’ ๐ต)))
63 nncn 8929 . . . . . . . . . . . 12 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„‚)
64633ad2ant3 1020 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„‚)
65643ad2ant1 1018 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ถ โˆˆ โ„‚)
66 nncn 8929 . . . . . . . . . . . 12 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„‚)
67663ad2ant2 1019 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„‚)
68673ad2ant1 1018 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต โˆˆ โ„‚)
6965, 68, 65ppncand 8310 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถ + ๐ต) + (๐ถ โˆ’ ๐ต)) = (๐ถ + ๐ถ))
70652timesd 9163 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท ๐ถ) = (๐ถ + ๐ถ))
7169, 70eqtr4d 2213 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถ + ๐ต) + (๐ถ โˆ’ ๐ต)) = (2 ยท ๐ถ))
72 oveq1 5884 . . . . . . . . . . . . 13 (((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) โˆ’ (๐ตโ†‘2)) = ((๐ถโ†‘2) โˆ’ (๐ตโ†‘2)))
73723ad2ant2 1019 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) โˆ’ (๐ตโ†‘2)) = ((๐ถโ†‘2) โˆ’ (๐ตโ†‘2)))
74 nncn 8929 . . . . . . . . . . . . . . . 16 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„‚)
75743ad2ant1 1018 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„‚)
76753ad2ant1 1018 . . . . . . . . . . . . . 14 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ด โˆˆ โ„‚)
7776sqcld 10654 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
7868sqcld 10654 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
7977, 78pncand 8271 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) โˆ’ (๐ตโ†‘2)) = (๐ดโ†‘2))
80 subsq 10629 . . . . . . . . . . . . 13 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ถโ†‘2) โˆ’ (๐ตโ†‘2)) = ((๐ถ + ๐ต) ยท (๐ถ โˆ’ ๐ต)))
8165, 68, 80syl2anc 411 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถโ†‘2) โˆ’ (๐ตโ†‘2)) = ((๐ถ + ๐ต) ยท (๐ถ โˆ’ ๐ต)))
8273, 79, 813eqtr3rd 2219 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถ + ๐ต) ยท (๐ถ โˆ’ ๐ต)) = (๐ดโ†‘2))
8382fveq2d 5521 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜((๐ถ + ๐ต) ยท (๐ถ โˆ’ ๐ต))) = (โˆšโ€˜(๐ดโ†‘2)))
8436, 48, 55, 59sqrtmuld 11180 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜((๐ถ + ๐ต) ยท (๐ถ โˆ’ ๐ต))) = ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))
85 nnre 8928 . . . . . . . . . . . . 13 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„)
86853ad2ant1 1018 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„)
87863ad2ant1 1018 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ด โˆˆ โ„)
88 nnnn0 9185 . . . . . . . . . . . . . 14 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„•0)
8988nn0ge0d 9234 . . . . . . . . . . . . 13 (๐ด โˆˆ โ„• โ†’ 0 โ‰ค ๐ด)
90893ad2ant1 1018 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 โ‰ค ๐ด)
91903ad2ant1 1018 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 โ‰ค ๐ด)
9287, 91sqrtsqd 11176 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ดโ†‘2)) = ๐ด)
9383, 84, 923eqtr3d 2218 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))) = ๐ด)
9493oveq2d 5893 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) = (2 ยท ๐ด))
9571, 94oveq12d 5895 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ต) + (๐ถ โˆ’ ๐ต)) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) = ((2 ยท ๐ถ) + (2 ยท ๐ด)))
96 addcl 7938 . . . . . . . . . . 11 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ + ๐ต) โˆˆ โ„‚)
9763, 66, 96syl2anr 290 . . . . . . . . . 10 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„‚)
98973adant1 1015 . . . . . . . . 9 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„‚)
99983ad2ant1 1018 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ต) โˆˆ โ„‚)
1009, 19mulcld 7980 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚)
101 mulcl 7940 . . . . . . . . 9 ((2 โˆˆ โ„‚ โˆง ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚) โ†’ (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) โˆˆ โ„‚)
10221, 100, 101sylancr 414 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) โˆˆ โ„‚)
103 subcl 8158 . . . . . . . . . . 11 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„‚)
10463, 66, 103syl2anr 290 . . . . . . . . . 10 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„‚)
1051043adant1 1015 . . . . . . . . 9 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„‚)
1061053ad2ant1 1018 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„‚)
10799, 102, 106add32d 8127 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ต) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) + (๐ถ โˆ’ ๐ต)) = (((๐ถ + ๐ต) + (๐ถ โˆ’ ๐ต)) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))))
108 adddi 7945 . . . . . . . 8 ((2 โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (2 ยท (๐ถ + ๐ด)) = ((2 ยท ๐ถ) + (2 ยท ๐ด)))
10921, 65, 76, 108mp3an2i 1342 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท (๐ถ + ๐ด)) = ((2 ยท ๐ถ) + (2 ยท ๐ด)))
11095, 107, 1093eqtr4d 2220 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ต) + (2 ยท ((โˆšโ€˜(๐ถ + ๐ต)) ยท (โˆšโ€˜(๐ถ โˆ’ ๐ต))))) + (๐ถ โˆ’ ๐ต)) = (2 ยท (๐ถ + ๐ด)))
11130, 62, 1103eqtrd 2214 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) = (2 ยท (๐ถ + ๐ด)))
112111oveq1d 5892 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2 ยท 2)) = ((2 ยท (๐ถ + ๐ด)) / (2 ยท 2)))
113 addcl 7938 . . . . . . . . 9 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (๐ถ + ๐ด) โˆˆ โ„‚)
11463, 74, 113syl2anr 290 . . . . . . . 8 ((๐ด โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ด) โˆˆ โ„‚)
1151143adant2 1016 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ด) โˆˆ โ„‚)
1161153ad2ant1 1018 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ด) โˆˆ โ„‚)
117 mulcl 7940 . . . . . 6 ((2 โˆˆ โ„‚ โˆง (๐ถ + ๐ด) โˆˆ โ„‚) โ†’ (2 ยท (๐ถ + ๐ด)) โˆˆ โ„‚)
11821, 116, 117sylancr 414 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท (๐ถ + ๐ด)) โˆˆ โ„‚)
11921a1i 9 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 2 โˆˆ โ„‚)
12022a1i 9 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 2 # 0)
121118, 119, 119, 120, 120divdivap1d 8781 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((2 ยท (๐ถ + ๐ด)) / 2) / 2) = ((2 ยท (๐ถ + ๐ด)) / (2 ยท 2)))
122112, 121eqtr4d 2213 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต)))โ†‘2) / (2 ยท 2)) = (((2 ยท (๐ถ + ๐ด)) / 2) / 2))
123116, 119, 120divcanap3d 8754 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((2 ยท (๐ถ + ๐ด)) / 2) = (๐ถ + ๐ด))
124123oveq1d 5892 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((2 ยท (๐ถ + ๐ด)) / 2) / 2) = ((๐ถ + ๐ด) / 2))
12528, 122, 1243eqtrd 2214 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)โ†‘2) = ((๐ถ + ๐ด) / 2))
1262, 125eqtrid 2222 1 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐‘€โ†‘2) = ((๐ถ + ๐ด) / 2))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5877  โ„‚cc 7811  โ„cr 7812  0cc0 7813  1c1 7814   + caddc 7816   ยท cmul 7818   < clt 7994   โ‰ค cle 7995   โˆ’ cmin 8130   # cap 8540   / cdiv 8631  โ„•cn 8921  2c2 8972  โ„+crp 9655  โ†‘cexp 10521  โˆšcsqrt 11007   โˆฅ cdvds 11796   gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-rsqrt 11009
This theorem is referenced by:  pythagtriplem15  12280  pythagtriplem17  12282
  Copyright terms: Public domain W3C validator