![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adddid | GIF version |
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | adddi 8004 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 7976 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: subdi 8404 mulreim 8623 apadd1 8627 conjmulap 8748 cju 8980 flhalf 10371 modqcyc 10430 addmodlteq 10469 binom2 10722 binom3 10728 sqoddm1div8 10764 bcpasc 10837 remim 11004 mulreap 11008 readd 11013 remullem 11015 imadd 11021 cjadd 11028 bdtrilem 11382 fsummulc2 11591 binomlem 11626 tanval3ap 11857 sinadd 11879 tanaddap 11882 bezoutlemnewy 12133 dvdsmulgcd 12162 lcmgcdlem 12215 pythagtriplem1 12403 pcaddlem 12477 mul4sqlem 12531 tangtx 14973 rpmulcxp 15044 binom4 15111 lgseisenlem2 15187 2lgsoddprmlem2 15194 2sqlem4 15205 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |