| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8028 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: subdi 8428 mulreim 8648 apadd1 8652 conjmulap 8773 cju 9005 flhalf 10409 modqcyc 10468 addmodlteq 10507 binom2 10760 binom3 10766 sqoddm1div8 10802 bcpasc 10875 remim 11042 mulreap 11046 readd 11051 remullem 11053 imadd 11059 cjadd 11066 bdtrilem 11421 fsummulc2 11630 binomlem 11665 tanval3ap 11896 sinadd 11918 tanaddap 11921 bezoutlemnewy 12188 dvdsmulgcd 12217 lcmgcdlem 12270 pythagtriplem1 12459 pcaddlem 12533 mul4sqlem 12587 tangtx 15158 rpmulcxp 15229 rpcxpmul2 15233 binom4 15299 lgseisenlem2 15396 2lgsoddprmlem2 15431 2sqlem4 15443 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |