| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8119 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 5994 ℂcc 7985 + caddc 7990 · cmul 7992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: subdi 8519 mulreim 8739 apadd1 8743 conjmulap 8864 cju 9096 flhalf 10509 modqcyc 10568 addmodlteq 10607 binom2 10860 binom3 10866 sqoddm1div8 10902 bcpasc 10975 remim 11357 mulreap 11361 readd 11366 remullem 11368 imadd 11374 cjadd 11381 bdtrilem 11736 fsummulc2 11945 binomlem 11980 tanval3ap 12211 sinadd 12233 tanaddap 12236 bezoutlemnewy 12503 dvdsmulgcd 12532 lcmgcdlem 12585 pythagtriplem1 12774 pcaddlem 12848 mul4sqlem 12902 tangtx 15497 rpmulcxp 15568 rpcxpmul2 15572 binom4 15638 lgseisenlem2 15735 2lgsoddprmlem2 15770 2sqlem4 15782 2sqlem8 15787 |
| Copyright terms: Public domain | W3C validator |