| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8030 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8002 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: subdi 8430 mulreim 8650 apadd1 8654 conjmulap 8775 cju 9007 flhalf 10411 modqcyc 10470 addmodlteq 10509 binom2 10762 binom3 10768 sqoddm1div8 10804 bcpasc 10877 remim 11044 mulreap 11048 readd 11053 remullem 11055 imadd 11061 cjadd 11068 bdtrilem 11423 fsummulc2 11632 binomlem 11667 tanval3ap 11898 sinadd 11920 tanaddap 11923 bezoutlemnewy 12190 dvdsmulgcd 12219 lcmgcdlem 12272 pythagtriplem1 12461 pcaddlem 12535 mul4sqlem 12589 tangtx 15182 rpmulcxp 15253 rpcxpmul2 15257 binom4 15323 lgseisenlem2 15420 2lgsoddprmlem2 15455 2sqlem4 15467 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |