| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8016 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7882 + caddc 7887 · cmul 7889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 7988 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: subdi 8416 mulreim 8636 apadd1 8640 conjmulap 8761 cju 8993 flhalf 10397 modqcyc 10456 addmodlteq 10495 binom2 10748 binom3 10754 sqoddm1div8 10790 bcpasc 10863 remim 11030 mulreap 11034 readd 11039 remullem 11041 imadd 11047 cjadd 11054 bdtrilem 11409 fsummulc2 11618 binomlem 11653 tanval3ap 11884 sinadd 11906 tanaddap 11909 bezoutlemnewy 12176 dvdsmulgcd 12205 lcmgcdlem 12258 pythagtriplem1 12447 pcaddlem 12521 mul4sqlem 12575 tangtx 15121 rpmulcxp 15192 rpcxpmul2 15196 binom4 15262 lgseisenlem2 15359 2lgsoddprmlem2 15394 2sqlem4 15406 2sqlem8 15411 |
| Copyright terms: Public domain | W3C validator |