| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8139 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 · cmul 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: subdi 8539 mulreim 8759 apadd1 8763 conjmulap 8884 cju 9116 flhalf 10530 modqcyc 10589 addmodlteq 10628 binom2 10881 binom3 10887 sqoddm1div8 10923 bcpasc 10996 remim 11379 mulreap 11383 readd 11388 remullem 11390 imadd 11396 cjadd 11403 bdtrilem 11758 fsummulc2 11967 binomlem 12002 tanval3ap 12233 sinadd 12255 tanaddap 12258 bezoutlemnewy 12525 dvdsmulgcd 12554 lcmgcdlem 12607 pythagtriplem1 12796 pcaddlem 12870 mul4sqlem 12924 tangtx 15520 rpmulcxp 15591 rpcxpmul2 15595 binom4 15661 lgseisenlem2 15758 2lgsoddprmlem2 15793 2sqlem4 15805 2sqlem8 15810 |
| Copyright terms: Public domain | W3C validator |