ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddid GIF version

Theorem adddid 7985
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1 (𝜑𝐴 ∈ ℂ)
addcld.2 (𝜑𝐵 ∈ ℂ)
addassd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
adddid (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem adddid
StepHypRef Expression
1 addcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addassd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 adddi 7946 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
51, 2, 3, 4syl3anc 1238 1 (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  (class class class)co 5878  cc 7812   + caddc 7817   · cmul 7819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-distr 7918
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  subdi  8345  mulreim  8564  apadd1  8568  conjmulap  8689  cju  8921  flhalf  10305  modqcyc  10362  addmodlteq  10401  binom2  10635  binom3  10641  sqoddm1div8  10677  bcpasc  10749  remim  10872  mulreap  10876  readd  10881  remullem  10883  imadd  10889  cjadd  10896  bdtrilem  11250  fsummulc2  11459  binomlem  11494  tanval3ap  11725  sinadd  11747  tanaddap  11750  bezoutlemnewy  12000  dvdsmulgcd  12029  lcmgcdlem  12080  pythagtriplem1  12268  pcaddlem  12341  mul4sqlem  12394  tangtx  14420  rpmulcxp  14491  binom4  14558  lgseisenlem2  14612  2lgsoddprmlem2  14615  2sqlem4  14626  2sqlem8  14631
  Copyright terms: Public domain W3C validator