| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8011 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 · cmul 7884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 7983 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: subdi 8411 mulreim 8631 apadd1 8635 conjmulap 8756 cju 8988 flhalf 10392 modqcyc 10451 addmodlteq 10490 binom2 10743 binom3 10749 sqoddm1div8 10785 bcpasc 10858 remim 11025 mulreap 11029 readd 11034 remullem 11036 imadd 11042 cjadd 11049 bdtrilem 11404 fsummulc2 11613 binomlem 11648 tanval3ap 11879 sinadd 11901 tanaddap 11904 bezoutlemnewy 12163 dvdsmulgcd 12192 lcmgcdlem 12245 pythagtriplem1 12434 pcaddlem 12508 mul4sqlem 12562 tangtx 15074 rpmulcxp 15145 rpcxpmul2 15149 binom4 15215 lgseisenlem2 15312 2lgsoddprmlem2 15347 2sqlem4 15359 2sqlem8 15364 |
| Copyright terms: Public domain | W3C validator |