ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddid GIF version

Theorem adddid 8159
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1 (𝜑𝐴 ∈ ℂ)
addcld.2 (𝜑𝐵 ∈ ℂ)
addassd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
adddid (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem adddid
StepHypRef Expression
1 addcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addassd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 adddi 8119 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
51, 2, 3, 4syl3anc 1271 1 (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 5994  cc 7985   + caddc 7990   · cmul 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-distr 8091
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  subdi  8519  mulreim  8739  apadd1  8743  conjmulap  8864  cju  9096  flhalf  10509  modqcyc  10568  addmodlteq  10607  binom2  10860  binom3  10866  sqoddm1div8  10902  bcpasc  10975  remim  11357  mulreap  11361  readd  11366  remullem  11368  imadd  11374  cjadd  11381  bdtrilem  11736  fsummulc2  11945  binomlem  11980  tanval3ap  12211  sinadd  12233  tanaddap  12236  bezoutlemnewy  12503  dvdsmulgcd  12532  lcmgcdlem  12585  pythagtriplem1  12774  pcaddlem  12848  mul4sqlem  12902  tangtx  15497  rpmulcxp  15568  rpcxpmul2  15572  binom4  15638  lgseisenlem2  15735  2lgsoddprmlem2  15770  2sqlem4  15782  2sqlem8  15787
  Copyright terms: Public domain W3C validator