Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adddid | GIF version |
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | adddi 7881 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1228 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 + caddc 7752 · cmul 7754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-distr 7853 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: subdi 8279 mulreim 8498 apadd1 8502 conjmulap 8621 cju 8852 flhalf 10233 modqcyc 10290 addmodlteq 10329 binom2 10562 binom3 10568 sqoddm1div8 10604 bcpasc 10675 remim 10798 mulreap 10802 readd 10807 remullem 10809 imadd 10815 cjadd 10822 bdtrilem 11176 fsummulc2 11385 binomlem 11420 tanval3ap 11651 sinadd 11673 tanaddap 11676 bezoutlemnewy 11925 dvdsmulgcd 11954 lcmgcdlem 12005 pythagtriplem1 12193 pcaddlem 12266 mul4sqlem 12319 tangtx 13359 rpmulcxp 13430 binom4 13497 2sqlem4 13554 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |