![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adddid | GIF version |
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | adddi 7946 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1238 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 (class class class)co 5878 ℂcc 7812 + caddc 7817 · cmul 7819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 7918 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: subdi 8345 mulreim 8564 apadd1 8568 conjmulap 8689 cju 8921 flhalf 10305 modqcyc 10362 addmodlteq 10401 binom2 10635 binom3 10641 sqoddm1div8 10677 bcpasc 10749 remim 10872 mulreap 10876 readd 10881 remullem 10883 imadd 10889 cjadd 10896 bdtrilem 11250 fsummulc2 11459 binomlem 11494 tanval3ap 11725 sinadd 11747 tanaddap 11750 bezoutlemnewy 12000 dvdsmulgcd 12029 lcmgcdlem 12080 pythagtriplem1 12268 pcaddlem 12341 mul4sqlem 12394 tangtx 14420 rpmulcxp 14491 binom4 14558 lgseisenlem2 14612 2lgsoddprmlem2 14615 2sqlem4 14626 2sqlem8 14631 |
Copyright terms: Public domain | W3C validator |