| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | GIF version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddid | ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | adddi 8072 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1250 | 1 ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5956 ℂcc 7938 + caddc 7943 · cmul 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8044 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: subdi 8472 mulreim 8692 apadd1 8696 conjmulap 8817 cju 9049 flhalf 10462 modqcyc 10521 addmodlteq 10560 binom2 10813 binom3 10819 sqoddm1div8 10855 bcpasc 10928 remim 11241 mulreap 11245 readd 11250 remullem 11252 imadd 11258 cjadd 11265 bdtrilem 11620 fsummulc2 11829 binomlem 11864 tanval3ap 12095 sinadd 12117 tanaddap 12120 bezoutlemnewy 12387 dvdsmulgcd 12416 lcmgcdlem 12469 pythagtriplem1 12658 pcaddlem 12732 mul4sqlem 12786 tangtx 15380 rpmulcxp 15451 rpcxpmul2 15455 binom4 15521 lgseisenlem2 15618 2lgsoddprmlem2 15653 2sqlem4 15665 2sqlem8 15670 |
| Copyright terms: Public domain | W3C validator |