ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiple GIF version

Theorem gcdmultiple 10787
Description: The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiple ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)

Proof of Theorem gcdmultiple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5597 . . . . . 6 (𝑘 = 1 → (𝑀 · 𝑘) = (𝑀 · 1))
21oveq2d 5605 . . . . 5 (𝑘 = 1 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 1)))
32eqeq1d 2091 . . . 4 (𝑘 = 1 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 1)) = 𝑀))
43imbi2d 228 . . 3 (𝑘 = 1 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)))
5 oveq2 5597 . . . . . 6 (𝑘 = 𝑛 → (𝑀 · 𝑘) = (𝑀 · 𝑛))
65oveq2d 5605 . . . . 5 (𝑘 = 𝑛 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑛)))
76eqeq1d 2091 . . . 4 (𝑘 = 𝑛 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑛)) = 𝑀))
87imbi2d 228 . . 3 (𝑘 = 𝑛 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀)))
9 oveq2 5597 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑀 · 𝑘) = (𝑀 · (𝑛 + 1)))
109oveq2d 5605 . . . . 5 (𝑘 = (𝑛 + 1) → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
1110eqeq1d 2091 . . . 4 (𝑘 = (𝑛 + 1) → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
1211imbi2d 228 . . 3 (𝑘 = (𝑛 + 1) → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
13 oveq2 5597 . . . . . 6 (𝑘 = 𝑁 → (𝑀 · 𝑘) = (𝑀 · 𝑁))
1413oveq2d 5605 . . . . 5 (𝑘 = 𝑁 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑁)))
1514eqeq1d 2091 . . . 4 (𝑘 = 𝑁 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
1615imbi2d 228 . . 3 (𝑘 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)))
17 nncn 8322 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
1817mulid1d 7406 . . . . 5 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
1918oveq2d 5605 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = (𝑀 gcd 𝑀))
20 nnz 8663 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21 gcdid 10755 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2220, 21syl 14 . . . . 5 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = (abs‘𝑀))
23 nnre 8321 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
24 nnnn0 8570 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
2524nn0ge0d 8619 . . . . . 6 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
2623, 25absidd 10425 . . . . 5 (𝑀 ∈ ℕ → (abs‘𝑀) = 𝑀)
2722, 26eqtrd 2115 . . . 4 (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = 𝑀)
2819, 27eqtrd 2115 . . 3 (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀)
2920adantr 270 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℤ)
30 nnz 8663 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
31 zmulcl 8697 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 · 𝑛) ∈ ℤ)
3220, 30, 31syl2an 283 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · 𝑛) ∈ ℤ)
33 1z 8670 . . . . . . . . . 10 1 ∈ ℤ
34 gcdaddm 10753 . . . . . . . . . 10 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3533, 34mp3an1 1256 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
3629, 32, 35syl2anc 403 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
37 nncn 8322 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
38 ax-1cn 7339 . . . . . . . . . . . 12 1 ∈ ℂ
39 adddi 7375 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
4038, 39mp3an3 1258 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1)))
41 mulcom 7372 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4238, 41mpan2 416 . . . . . . . . . . . . 13 (𝑀 ∈ ℂ → (𝑀 · 1) = (1 · 𝑀))
4342adantr 270 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀))
4443oveq2d 5605 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4540, 44eqtrd 2115 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4617, 37, 45syl2an 283 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀)))
4746oveq2d 5605 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · (𝑛 + 1))) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀))))
4836, 47eqtr4d 2118 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd (𝑀 · (𝑛 + 1))))
4948eqeq1d 2091 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
5049biimpd 142 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))
5150expcom 114 . . . 4 (𝑛 ∈ ℕ → (𝑀 ∈ ℕ → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
5251a2d 26 . . 3 (𝑛 ∈ ℕ → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀) → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)))
534, 8, 12, 16, 28, 52nnind 8330 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))
5453impcom 123 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  cfv 4967  (class class class)co 5589  cc 7249  1c1 7252   + caddc 7254   · cmul 7256  cn 8314  cz 8644  abscabs 10255   gcd cgcd 10716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363  ax-pre-mulext 7364  ax-arch 7365  ax-caucvg 7366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-frec 6086  df-sup 6584  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957  df-div 8036  df-inn 8315  df-2 8373  df-3 8374  df-4 8375  df-n0 8564  df-z 8645  df-uz 8913  df-q 8998  df-rp 9028  df-fz 9318  df-fzo 9442  df-fl 9564  df-mod 9617  df-iseq 9739  df-iexp 9790  df-cj 10101  df-re 10102  df-im 10103  df-rsqrt 10256  df-abs 10257  df-dvds 10575  df-gcd 10717
This theorem is referenced by:  gcdmultiplez  10788  rpmulgcd  10793
  Copyright terms: Public domain W3C validator