Step | Hyp | Ref
| Expression |
1 | | oveq2 5861 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑀 · 𝑘) = (𝑀 · 1)) |
2 | 1 | oveq2d 5869 |
. . . . 5
⊢ (𝑘 = 1 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 1))) |
3 | 2 | eqeq1d 2179 |
. . . 4
⊢ (𝑘 = 1 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 1)) = 𝑀)) |
4 | 3 | imbi2d 229 |
. . 3
⊢ (𝑘 = 1 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀))) |
5 | | oveq2 5861 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑀 · 𝑘) = (𝑀 · 𝑛)) |
6 | 5 | oveq2d 5869 |
. . . . 5
⊢ (𝑘 = 𝑛 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑛))) |
7 | 6 | eqeq1d 2179 |
. . . 4
⊢ (𝑘 = 𝑛 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑛)) = 𝑀)) |
8 | 7 | imbi2d 229 |
. . 3
⊢ (𝑘 = 𝑛 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀))) |
9 | | oveq2 5861 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝑀 · 𝑘) = (𝑀 · (𝑛 + 1))) |
10 | 9 | oveq2d 5869 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · (𝑛 + 1)))) |
11 | 10 | eqeq1d 2179 |
. . . 4
⊢ (𝑘 = (𝑛 + 1) → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑘 = (𝑛 + 1) → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))) |
13 | | oveq2 5861 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑀 · 𝑘) = (𝑀 · 𝑁)) |
14 | 13 | oveq2d 5869 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑁))) |
15 | 14 | eqeq1d 2179 |
. . . 4
⊢ (𝑘 = 𝑁 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
16 | 15 | imbi2d 229 |
. . 3
⊢ (𝑘 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))) |
17 | | nncn 8886 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
18 | 17 | mulid1d 7937 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀) |
19 | 18 | oveq2d 5869 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = (𝑀 gcd 𝑀)) |
20 | | nnz 9231 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
21 | | gcdid 11941 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀)) |
22 | 20, 21 | syl 14 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = (abs‘𝑀)) |
23 | | nnre 8885 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
24 | | nnnn0 9142 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
25 | 24 | nn0ge0d 9191 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
26 | 23, 25 | absidd 11131 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
(abs‘𝑀) = 𝑀) |
27 | 22, 26 | eqtrd 2203 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = 𝑀) |
28 | 19, 27 | eqtrd 2203 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀) |
29 | 20 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑀 ∈
ℤ) |
30 | | nnz 9231 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
31 | | zmulcl 9265 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 · 𝑛) ∈ ℤ) |
32 | 20, 30, 31 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · 𝑛) ∈ ℤ) |
33 | | 1z 9238 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
34 | | gcdaddm 11939 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ (𝑀
· 𝑛) ∈ ℤ)
→ (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
35 | 33, 34 | mp3an1 1319 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
36 | 29, 32, 35 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
37 | | nncn 8886 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
38 | | ax-1cn 7867 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
39 | | adddi 7906 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 ·
(𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
40 | 38, 39 | mp3an3 1321 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
41 | | mulcom 7903 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 ·
1) = (1 · 𝑀)) |
42 | 38, 41 | mpan2 423 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℂ → (𝑀 · 1) = (1 · 𝑀)) |
43 | 42 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀)) |
44 | 43 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + (1 · 𝑀))) |
45 | 40, 44 | eqtrd 2203 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀))) |
46 | 17, 37, 45 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀))) |
47 | 46 | oveq2d 5869 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · (𝑛 + 1))) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
48 | 36, 47 | eqtr4d 2206 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd (𝑀 · (𝑛 + 1)))) |
49 | 48 | eqeq1d 2179 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)) |
50 | 49 | biimpd 143 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)) |
51 | 50 | expcom 115 |
. . . 4
⊢ (𝑛 ∈ ℕ → (𝑀 ∈ ℕ → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))) |
52 | 51 | a2d 26 |
. . 3
⊢ (𝑛 ∈ ℕ → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀) → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))) |
53 | 4, 8, 12, 16, 28, 52 | nnind 8894 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
54 | 53 | impcom 124 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |