| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑀 · 𝑘) = (𝑀 · 1)) |
| 2 | 1 | oveq2d 5938 |
. . . . 5
⊢ (𝑘 = 1 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 1))) |
| 3 | 2 | eqeq1d 2205 |
. . . 4
⊢ (𝑘 = 1 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 1)) = 𝑀)) |
| 4 | 3 | imbi2d 230 |
. . 3
⊢ (𝑘 = 1 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀))) |
| 5 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑀 · 𝑘) = (𝑀 · 𝑛)) |
| 6 | 5 | oveq2d 5938 |
. . . . 5
⊢ (𝑘 = 𝑛 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑛))) |
| 7 | 6 | eqeq1d 2205 |
. . . 4
⊢ (𝑘 = 𝑛 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑛)) = 𝑀)) |
| 8 | 7 | imbi2d 230 |
. . 3
⊢ (𝑘 = 𝑛 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀))) |
| 9 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝑀 · 𝑘) = (𝑀 · (𝑛 + 1))) |
| 10 | 9 | oveq2d 5938 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · (𝑛 + 1)))) |
| 11 | 10 | eqeq1d 2205 |
. . . 4
⊢ (𝑘 = (𝑛 + 1) → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)) |
| 12 | 11 | imbi2d 230 |
. . 3
⊢ (𝑘 = (𝑛 + 1) → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))) |
| 13 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑀 · 𝑘) = (𝑀 · 𝑁)) |
| 14 | 13 | oveq2d 5938 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝑀 gcd (𝑀 · 𝑘)) = (𝑀 gcd (𝑀 · 𝑁))) |
| 15 | 14 | eqeq1d 2205 |
. . . 4
⊢ (𝑘 = 𝑁 → ((𝑀 gcd (𝑀 · 𝑘)) = 𝑀 ↔ (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 16 | 15 | imbi2d 230 |
. . 3
⊢ (𝑘 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑘)) = 𝑀) ↔ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀))) |
| 17 | | nncn 8998 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
| 18 | 17 | mulridd 8043 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀) |
| 19 | 18 | oveq2d 5938 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = (𝑀 gcd 𝑀)) |
| 20 | | nnz 9345 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
| 21 | | gcdid 12153 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀)) |
| 22 | 20, 21 | syl 14 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = (abs‘𝑀)) |
| 23 | | nnre 8997 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
| 24 | | nnnn0 9256 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
| 25 | 24 | nn0ge0d 9305 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 0 ≤
𝑀) |
| 26 | 23, 25 | absidd 11332 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
(abs‘𝑀) = 𝑀) |
| 27 | 22, 26 | eqtrd 2229 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 gcd 𝑀) = 𝑀) |
| 28 | 19, 27 | eqtrd 2229 |
. . 3
⊢ (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 1)) = 𝑀) |
| 29 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑀 ∈
ℤ) |
| 30 | | nnz 9345 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 31 | | zmulcl 9379 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 · 𝑛) ∈ ℤ) |
| 32 | 20, 30, 31 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · 𝑛) ∈ ℤ) |
| 33 | | 1z 9352 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 34 | | gcdaddm 12151 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ 𝑀
∈ ℤ ∧ (𝑀
· 𝑛) ∈ ℤ)
→ (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
| 35 | 33, 34 | mp3an1 1335 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑛) ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
| 36 | 29, 32, 35 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
| 37 | | nncn 8998 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 38 | | ax-1cn 7972 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 39 | | adddi 8011 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 ·
(𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
| 40 | 38, 39 | mp3an3 1337 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (𝑀 · 1))) |
| 41 | | mulcom 8008 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑀 ·
1) = (1 · 𝑀)) |
| 42 | 38, 41 | mpan2 425 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℂ → (𝑀 · 1) = (1 · 𝑀)) |
| 43 | 42 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · 1) = (1 · 𝑀)) |
| 44 | 43 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑀 · 𝑛) + (𝑀 · 1)) = ((𝑀 · 𝑛) + (1 · 𝑀))) |
| 45 | 40, 44 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀))) |
| 46 | 17, 37, 45 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 · (𝑛 + 1)) = ((𝑀 · 𝑛) + (1 · 𝑀))) |
| 47 | 46 | oveq2d 5938 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · (𝑛 + 1))) = (𝑀 gcd ((𝑀 · 𝑛) + (1 · 𝑀)))) |
| 48 | 36, 47 | eqtr4d 2232 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑛)) = (𝑀 gcd (𝑀 · (𝑛 + 1)))) |
| 49 | 48 | eqeq1d 2205 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 ↔ (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)) |
| 50 | 49 | biimpd 144 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀)) |
| 51 | 50 | expcom 116 |
. . . 4
⊢ (𝑛 ∈ ℕ → (𝑀 ∈ ℕ → ((𝑀 gcd (𝑀 · 𝑛)) = 𝑀 → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))) |
| 52 | 51 | a2d 26 |
. . 3
⊢ (𝑛 ∈ ℕ → ((𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑛)) = 𝑀) → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · (𝑛 + 1))) = 𝑀))) |
| 53 | 4, 8, 12, 16, 28, 52 | nnind 9006 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀)) |
| 54 | 53 | impcom 125 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) |