ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opoe GIF version

Theorem opoe 11832
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))

Proof of Theorem opoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11810 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 11810 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 596 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 2635 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 9219 . . . . . . . . 9 2 ∈ ℤ
6 zaddcl 9231 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
76peano2zd 9316 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 + 𝑏) + 1) ∈ ℤ)
8 dvdsmul1 11753 . . . . . . . . 9 ((2 ∈ ℤ ∧ ((𝑎 + 𝑏) + 1) ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
95, 7, 8sylancr 411 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
10 zcn 9196 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
11 zcn 9196 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
12 addcl 7878 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
13 2cn 8928 . . . . . . . . . . . . . 14 2 ∈ ℂ
14 ax-1cn 7846 . . . . . . . . . . . . . 14 1 ∈ ℂ
15 adddi 7885 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑎 + 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1613, 14, 15mp3an13 1318 . . . . . . . . . . . . 13 ((𝑎 + 𝑏) ∈ ℂ → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1712, 16syl 14 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
18 adddi 7885 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1913, 18mp3an1 1314 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
2019oveq1d 5857 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
2117, 20eqtrd 2198 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
22 2t1e2 9010 . . . . . . . . . . . . 13 (2 · 1) = 2
23 df-2 8916 . . . . . . . . . . . . 13 2 = (1 + 1)
2422, 23eqtri 2186 . . . . . . . . . . . 12 (2 · 1) = (1 + 1)
2524oveq2i 5853 . . . . . . . . . . 11 (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1))
2621, 25eqtrdi 2215 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)))
27 mulcl 7880 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
2813, 27mpan 421 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
29 mulcl 7880 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
3013, 29mpan 421 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
31 add4 8059 . . . . . . . . . . . 12 ((((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ)) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3214, 14, 31mpanr12 436 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3328, 30, 32syl2an 287 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3426, 33eqtrd 2198 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3510, 11, 34syl2an 287 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
369, 35breqtrd 4008 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
37 oveq12 5851 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) = (𝐴 + 𝐵))
3837breq2d 3994 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴 + 𝐵)))
3936, 38syl5ibcom 154 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4039rexlimivv 2589 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
414, 40sylbir 134 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
423, 41syl6bi 162 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4342imp 123 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
4443an4s 578 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  1c1 7754   + caddc 7756   · cmul 7758  2c2 8908  cz 9191  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  pythagtriplem11  12206
  Copyright terms: Public domain W3C validator