ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeo GIF version

Theorem opeo 11834
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opeo (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵))

Proof of Theorem opeo
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11810 . . . . . 6 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 2z 9219 . . . . . . 7 2 ∈ ℤ
3 divides 11729 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
42, 3mpan 421 . . . . . 6 (𝐵 ∈ ℤ → (2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
51, 4bi2anan9 596 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵)))
6 reeanv 2635 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵))
7 zaddcl 9231 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
8 zcn 9196 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
9 zcn 9196 . . . . . . . . . 10 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
10 2cn 8928 . . . . . . . . . . . . 13 2 ∈ ℂ
11 adddi 7885 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1210, 11mp3an1 1314 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1312oveq1d 5857 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + 1) = (((2 · 𝑎) + (2 · 𝑏)) + 1))
14 mulcl 7880 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
1510, 14mpan 421 . . . . . . . . . . . 12 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
16 mulcl 7880 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
1710, 16mpan 421 . . . . . . . . . . . 12 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
18 ax-1cn 7846 . . . . . . . . . . . . 13 1 ∈ ℂ
19 add32 8057 . . . . . . . . . . . . 13 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + 1) = (((2 · 𝑎) + 1) + (2 · 𝑏)))
2018, 19mp3an3 1316 . . . . . . . . . . . 12 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + 1) = (((2 · 𝑎) + 1) + (2 · 𝑏)))
2115, 17, 20syl2an 287 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + 1) = (((2 · 𝑎) + 1) + (2 · 𝑏)))
22 mulcom 7882 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) = (𝑏 · 2))
2310, 22mpan 421 . . . . . . . . . . . . 13 (𝑏 ∈ ℂ → (2 · 𝑏) = (𝑏 · 2))
2423adantl 275 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) = (𝑏 · 2))
2524oveq2d 5858 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + 1) + (2 · 𝑏)) = (((2 · 𝑎) + 1) + (𝑏 · 2)))
2613, 21, 253eqtrd 2202 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)))
278, 9, 26syl2an 287 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((2 · (𝑎 + 𝑏)) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)))
28 oveq2 5850 . . . . . . . . . . . 12 (𝑐 = (𝑎 + 𝑏) → (2 · 𝑐) = (2 · (𝑎 + 𝑏)))
2928oveq1d 5857 . . . . . . . . . . 11 (𝑐 = (𝑎 + 𝑏) → ((2 · 𝑐) + 1) = ((2 · (𝑎 + 𝑏)) + 1))
3029eqeq1d 2174 . . . . . . . . . 10 (𝑐 = (𝑎 + 𝑏) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)) ↔ ((2 · (𝑎 + 𝑏)) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2))))
3130rspcev 2830 . . . . . . . . 9 (((𝑎 + 𝑏) ∈ ℤ ∧ ((2 · (𝑎 + 𝑏)) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2))) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)))
327, 27, 31syl2anc 409 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)))
33 oveq12 5851 . . . . . . . . . 10 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑎) + 1) + (𝑏 · 2)) = (𝐴 + 𝐵))
3433eqeq2d 2177 . . . . . . . . 9 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)) ↔ ((2 · 𝑐) + 1) = (𝐴 + 𝐵)))
3534rexbidv 2467 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → (∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (((2 · 𝑎) + 1) + (𝑏 · 2)) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵)))
3632, 35syl5ibcom 154 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵)))
3736rexlimivv 2589 . . . . . 6 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵))
386, 37sylbir 134 . . . . 5 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 2) = 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵))
395, 38syl6bi 162 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵)))
4039imp 123 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵))
4140an4s 578 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵))
42 zaddcl 9231 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
4342ad2ant2r 501 . . 3 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (𝐴 + 𝐵) ∈ ℤ)
44 odd2np1 11810 . . 3 ((𝐴 + 𝐵) ∈ ℤ → (¬ 2 ∥ (𝐴 + 𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵)))
4543, 44syl 14 . 2 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → (¬ 2 ∥ (𝐴 + 𝐵) ↔ ∃𝑐 ∈ ℤ ((2 · 𝑐) + 1) = (𝐴 + 𝐵)))
4641, 45mpbird 166 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  1c1 7754   + caddc 7756   · cmul 7758  2c2 8908  cz 9191  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator