Proof of Theorem cosadd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | addcl 8004 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | 
| 2 |   | cosval 11868 | 
. . 3
⊢ ((𝐴 + 𝐵) ∈ ℂ → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2)) | 
| 3 | 1, 2 | syl 14 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(cos‘(𝐴 + 𝐵)) = (((exp‘(i ·
(𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2)) | 
| 4 |   | coscl 11872 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(cos‘𝐴) ∈
ℂ) | 
| 5 | 4 | adantr 276 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(cos‘𝐴) ∈
ℂ) | 
| 6 |   | coscl 11872 | 
. . . . . . . 8
⊢ (𝐵 ∈ ℂ →
(cos‘𝐵) ∈
ℂ) | 
| 7 | 6 | adantl 277 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(cos‘𝐵) ∈
ℂ) | 
| 8 | 5, 7 | mulcld 8047 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((cos‘𝐴) ·
(cos‘𝐵)) ∈
ℂ) | 
| 9 |   | ax-icn 7974 | 
. . . . . . . 8
⊢ i ∈
ℂ | 
| 10 |   | sincl 11871 | 
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ →
(sin‘𝐵) ∈
ℂ) | 
| 11 | 10 | adantl 277 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘𝐵) ∈
ℂ) | 
| 12 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → (i ·
(sin‘𝐵)) ∈
ℂ) | 
| 13 | 9, 11, 12 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i
· (sin‘𝐵))
∈ ℂ) | 
| 14 |   | sincl 11871 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) ∈
ℂ) | 
| 15 | 14 | adantr 276 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(sin‘𝐴) ∈
ℂ) | 
| 16 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i ·
(sin‘𝐴)) ∈
ℂ) | 
| 17 | 9, 15, 16 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i
· (sin‘𝐴))
∈ ℂ) | 
| 18 | 13, 17 | mulcld 8047 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i
· (sin‘𝐵))
· (i · (sin‘𝐴))) ∈ ℂ) | 
| 19 | 8, 18 | addcld 8046 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) ∈ ℂ) | 
| 20 | 5, 13 | mulcld 8047 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((cos‘𝐴) · (i
· (sin‘𝐵)))
∈ ℂ) | 
| 21 | 7, 17 | mulcld 8047 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((cos‘𝐵) · (i
· (sin‘𝐴)))
∈ ℂ) | 
| 22 | 20, 21 | addcld 8046 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((cos‘𝐴) · (i
· (sin‘𝐵))) +
((cos‘𝐵) · (i
· (sin‘𝐴))))
∈ ℂ) | 
| 23 | 19, 22, 19 | ppncand 8377 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i ·
(sin‘𝐴))))) +
((((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i ·
(sin‘𝐴)))))) =
((((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴)))))) | 
| 24 |   | adddi 8011 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ ∧ 𝐵
∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵))) | 
| 25 | 9, 24 | mp3an1 1335 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i
· (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵))) | 
| 26 | 25 | fveq2d 5562 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(exp‘(i · (𝐴 +
𝐵))) = (exp‘((i
· 𝐴) + (i ·
𝐵)))) | 
| 27 |   | simpl 109 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈
ℂ) | 
| 28 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) | 
| 29 | 9, 27, 28 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i
· 𝐴) ∈
ℂ) | 
| 30 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈
ℂ) | 
| 31 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ 𝐵
∈ ℂ) → (i · 𝐵) ∈ ℂ) | 
| 32 | 9, 30, 31 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i
· 𝐵) ∈
ℂ) | 
| 33 |   | efadd 11840 | 
. . . . . . 7
⊢ (((i
· 𝐴) ∈ ℂ
∧ (i · 𝐵) ∈
ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐵)))) | 
| 34 | 29, 32, 33 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(exp‘((i · 𝐴)
+ (i · 𝐵))) =
((exp‘(i · 𝐴))
· (exp‘(i · 𝐵)))) | 
| 35 |   | efival 11897 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= ((cos‘𝐴) + (i
· (sin‘𝐴)))) | 
| 36 |   | efival 11897 | 
. . . . . . . 8
⊢ (𝐵 ∈ ℂ →
(exp‘(i · 𝐵))
= ((cos‘𝐵) + (i
· (sin‘𝐵)))) | 
| 37 | 35, 36 | oveqan12d 5941 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐵))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵))))) | 
| 38 | 5, 17, 7, 13 | muladdd 8442 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((cos‘𝐴) + (i
· (sin‘𝐴)))
· ((cos‘𝐵) +
(i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴)))) +
(((cos‘𝐴) · (i
· (sin‘𝐵))) +
((cos‘𝐵) · (i
· (sin‘𝐴)))))) | 
| 39 | 37, 38 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴)))) +
(((cos‘𝐴) · (i
· (sin‘𝐵))) +
((cos‘𝐵) · (i
· (sin‘𝐴)))))) | 
| 40 | 26, 34, 39 | 3eqtrd 2233 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(exp‘(i · (𝐴 +
𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i ·
(sin‘𝐵)) · (i
· (sin‘𝐴)))) +
(((cos‘𝐴) · (i
· (sin‘𝐵))) +
((cos‘𝐵) · (i
· (sin‘𝐴)))))) | 
| 41 |   | negicn 8227 | 
. . . . . . . 8
⊢ -i ∈
ℂ | 
| 42 |   | adddi 8011 | 
. . . . . . . 8
⊢ ((-i
∈ ℂ ∧ 𝐴
∈ ℂ ∧ 𝐵
∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵))) | 
| 43 | 41, 42 | mp3an1 1335 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i
· (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵))) | 
| 44 | 43 | fveq2d 5562 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(exp‘(-i · (𝐴
+ 𝐵))) = (exp‘((-i
· 𝐴) + (-i ·
𝐵)))) | 
| 45 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((-i
∈ ℂ ∧ 𝐴
∈ ℂ) → (-i · 𝐴) ∈ ℂ) | 
| 46 | 41, 27, 45 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i
· 𝐴) ∈
ℂ) | 
| 47 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((-i
∈ ℂ ∧ 𝐵
∈ ℂ) → (-i · 𝐵) ∈ ℂ) | 
| 48 | 41, 30, 47 | sylancr 414 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i
· 𝐵) ∈
ℂ) | 
| 49 |   | efadd 11840 | 
. . . . . . 7
⊢ (((-i
· 𝐴) ∈ ℂ
∧ (-i · 𝐵)
∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i
· 𝐵)))) | 
| 50 | 46, 48, 49 | syl2anc 411 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(exp‘((-i · 𝐴)
+ (-i · 𝐵))) =
((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵)))) | 
| 51 |   | efmival 11898 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘(-i · 𝐴))
= ((cos‘𝐴) − (i
· (sin‘𝐴)))) | 
| 52 |   | efmival 11898 | 
. . . . . . . 8
⊢ (𝐵 ∈ ℂ →
(exp‘(-i · 𝐵))
= ((cos‘𝐵) − (i
· (sin‘𝐵)))) | 
| 53 | 51, 52 | oveqan12d 5941 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = (((cos‘𝐴) − (i ·
(sin‘𝐴))) ·
((cos‘𝐵) − (i
· (sin‘𝐵))))) | 
| 54 | 5, 17, 7, 13 | mulsubd 8443 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((cos‘𝐴) − (i
· (sin‘𝐴)))
· ((cos‘𝐵)
− (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴)))) −
(((cos‘𝐴) · (i
· (sin‘𝐵))) +
((cos‘𝐵) · (i
· (sin‘𝐴)))))) | 
| 55 | 53, 54 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i ·
(sin‘𝐵)) · (i
· (sin‘𝐴))))
− (((cos‘𝐴)
· (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))) | 
| 56 | 44, 50, 55 | 3eqtrd 2233 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(exp‘(-i · (𝐴
+ 𝐵))) =
((((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i ·
(sin‘𝐴)))))) | 
| 57 | 40, 56 | oveq12d 5940 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((exp‘(i · (𝐴
+ 𝐵))) + (exp‘(-i
· (𝐴 + 𝐵)))) = (((((cos‘𝐴) · (cos‘𝐵)) + ((i ·
(sin‘𝐵)) · (i
· (sin‘𝐴)))) +
(((cos‘𝐴) · (i
· (sin‘𝐵))) +
((cos‘𝐵) · (i
· (sin‘𝐴)))))
+ ((((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i ·
(sin‘𝐴))))))) | 
| 58 | 19 | 2timesd 9234 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· (((cos‘𝐴)
· (cos‘𝐵)) +
((i · (sin‘𝐵))
· (i · (sin‘𝐴))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴)))) +
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))))) | 
| 59 | 23, 57, 58 | 3eqtr4d 2239 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((exp‘(i · (𝐴
+ 𝐵))) + (exp‘(-i
· (𝐴 + 𝐵)))) = (2 ·
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))))) | 
| 60 | 59 | oveq1d 5937 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((exp‘(i · (𝐴
+ 𝐵))) + (exp‘(-i
· (𝐴 + 𝐵)))) / 2) = ((2 ·
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴))))) / 2)) | 
| 61 |   | 2cn 9061 | 
. . . . 5
⊢ 2 ∈
ℂ | 
| 62 |   | 2ap0 9083 | 
. . . . 5
⊢ 2 #
0 | 
| 63 |   | divcanap3 8725 | 
. . . . 5
⊢
(((((cos‘𝐴)
· (cos‘𝐵)) +
((i · (sin‘𝐵))
· (i · (sin‘𝐴)))) ∈ ℂ ∧ 2 ∈ ℂ
∧ 2 # 0) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴))))) / 2) =
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴))))) | 
| 64 | 61, 62, 63 | mp3an23 1340 | 
. . . 4
⊢
((((cos‘𝐴)
· (cos‘𝐵)) +
((i · (sin‘𝐵))
· (i · (sin‘𝐴)))) ∈ ℂ → ((2 ·
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴))))) | 
| 65 | 19, 64 | syl 14 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2
· (((cos‘𝐴)
· (cos‘𝐵)) +
((i · (sin‘𝐵))
· (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i ·
(sin‘𝐴))))) | 
| 66 | 9 | a1i 9 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈
ℂ) | 
| 67 | 66, 11, 66, 15 | mul4d 8181 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i
· (sin‘𝐵))
· (i · (sin‘𝐴))) = ((i · i) ·
((sin‘𝐵) ·
(sin‘𝐴)))) | 
| 68 |   | ixi 8610 | 
. . . . . . 7
⊢ (i
· i) = -1 | 
| 69 | 68 | oveq1i 5932 | 
. . . . . 6
⊢ ((i
· i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐵) · (sin‘𝐴))) | 
| 70 | 11, 15 | mulcomd 8048 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘𝐵) ·
(sin‘𝐴)) =
((sin‘𝐴) ·
(sin‘𝐵))) | 
| 71 | 70 | oveq2d 5938 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1
· ((sin‘𝐵)
· (sin‘𝐴))) =
(-1 · ((sin‘𝐴)
· (sin‘𝐵)))) | 
| 72 | 69, 71 | eqtrid 2241 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i
· i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵)))) | 
| 73 | 15, 11 | mulcld 8047 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((sin‘𝐴) ·
(sin‘𝐵)) ∈
ℂ) | 
| 74 | 73 | mulm1d 8436 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1
· ((sin‘𝐴)
· (sin‘𝐵))) =
-((sin‘𝐴) ·
(sin‘𝐵))) | 
| 75 | 67, 72, 74 | 3eqtrd 2233 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i
· (sin‘𝐵))
· (i · (sin‘𝐴))) = -((sin‘𝐴) · (sin‘𝐵))) | 
| 76 | 75 | oveq2d 5938 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((cos‘𝐴) ·
(cos‘𝐵)) + ((i
· (sin‘𝐵))
· (i · (sin‘𝐴)))) = (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵)))) | 
| 77 | 8, 73 | negsubd 8343 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(((cos‘𝐴) ·
(cos‘𝐵)) +
-((sin‘𝐴) ·
(sin‘𝐵))) =
(((cos‘𝐴) ·
(cos‘𝐵)) −
((sin‘𝐴) ·
(sin‘𝐵)))) | 
| 78 | 65, 76, 77 | 3eqtrd 2233 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2
· (((cos‘𝐴)
· (cos‘𝐵)) +
((i · (sin‘𝐵))
· (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | 
| 79 | 3, 60, 78 | 3eqtrd 2233 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) |