ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosadd GIF version

Theorem cosadd 11700
Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))

Proof of Theorem cosadd
StepHypRef Expression
1 addcl 7899 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 cosval 11666 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2))
31, 2syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2))
4 coscl 11670 . . . . . . . 8 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
54adantr 274 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
6 coscl 11670 . . . . . . . 8 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
76adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐵) ∈ ℂ)
85, 7mulcld 7940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
9 ax-icn 7869 . . . . . . . 8 i ∈ ℂ
10 sincl 11669 . . . . . . . . 9 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
1110adantl 275 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐵) ∈ ℂ)
12 mulcl 7901 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
139, 11, 12sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
14 sincl 11669 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1514adantr 274 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
16 mulcl 7901 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
179, 15, 16sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
1813, 17mulcld 7940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) ∈ ℂ)
198, 18addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ)
205, 13mulcld 7940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘𝐵))) ∈ ℂ)
217, 17mulcld 7940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) · (i · (sin‘𝐴))) ∈ ℂ)
2220, 21addcld 7939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ)
2319, 22, 19ppncand 8270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) + ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
24 adddi 7906 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
259, 24mp3an1 1319 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
2625fveq2d 5500 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = (exp‘((i · 𝐴) + (i · 𝐵))))
27 simpl 108 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
28 mulcl 7901 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
299, 27, 28sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
30 simpr 109 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
31 mulcl 7901 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
329, 30, 31sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
33 efadd 11638 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
3429, 32, 33syl2anc 409 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
35 efival 11695 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
36 efival 11695 . . . . . . . 8 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
3735, 36oveqan12d 5872 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))))
385, 17, 7, 13muladdd 8335 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
3937, 38eqtrd 2203 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
4026, 34, 393eqtrd 2207 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
41 negicn 8120 . . . . . . . 8 -i ∈ ℂ
42 adddi 7906 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
4341, 42mp3an1 1319 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
4443fveq2d 5500 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = (exp‘((-i · 𝐴) + (-i · 𝐵))))
45 mulcl 7901 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4641, 27, 45sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
47 mulcl 7901 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
4841, 30, 47sylancr 412 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
49 efadd 11638 . . . . . . 7 (((-i · 𝐴) ∈ ℂ ∧ (-i · 𝐵) ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
5046, 48, 49syl2anc 409 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
51 efmival 11696 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
52 efmival 11696 . . . . . . . 8 (𝐵 ∈ ℂ → (exp‘(-i · 𝐵)) = ((cos‘𝐵) − (i · (sin‘𝐵))))
5351, 52oveqan12d 5872 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))))
545, 17, 7, 13mulsubd 8336 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5553, 54eqtrd 2203 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5644, 50, 553eqtrd 2207 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5740, 56oveq12d 5871 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) = (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) + ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
58192timesd 9120 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
5923, 57, 583eqtr4d 2213 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) = (2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
6059oveq1d 5868 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2) = ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2))
61 2cn 8949 . . . . 5 2 ∈ ℂ
62 2ap0 8971 . . . . 5 2 # 0
63 divcanap3 8615 . . . . 5 (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
6461, 62, 63mp3an23 1324 . . . 4 ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
6519, 64syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
669a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6766, 11, 66, 15mul4d 8074 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) = ((i · i) · ((sin‘𝐵) · (sin‘𝐴))))
68 ixi 8502 . . . . . . 7 (i · i) = -1
6968oveq1i 5863 . . . . . 6 ((i · i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐵) · (sin‘𝐴)))
7011, 15mulcomd 7941 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐵) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘𝐵)))
7170oveq2d 5869 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵))))
7269, 71eqtrid 2215 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵))))
7315, 11mulcld 7940 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
7473mulm1d 8329 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((sin‘𝐴) · (sin‘𝐵))) = -((sin‘𝐴) · (sin‘𝐵)))
7567, 72, 743eqtrd 2207 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) = -((sin‘𝐴) · (sin‘𝐵)))
7675oveq2d 5869 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) = (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵))))
778, 73negsubd 8236 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
7865, 76, 773eqtrd 2207 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
793, 60, 783eqtrd 2207 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775  ici 7776   + caddc 7777   · cmul 7779  cmin 8090  -cneg 8091   # cap 8500   / cdiv 8589  2c2 8929  expce 11605  sincsin 11607  cosccos 11608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614
This theorem is referenced by:  tanaddaplem  11701  tanaddap  11702  cossub  11704  sinmul  11707  cosmul  11708  addcos  11709  subcos  11710  sincossq  11711  cos2t  11713  cos12dec  11730  demoivreALT  11736  cosppi  13533  coshalfpip  13537
  Copyright terms: Public domain W3C validator