ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosadd GIF version

Theorem cosadd 11902
Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))

Proof of Theorem cosadd
StepHypRef Expression
1 addcl 8004 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 cosval 11868 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2))
31, 2syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2))
4 coscl 11872 . . . . . . . 8 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
54adantr 276 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
6 coscl 11872 . . . . . . . 8 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
76adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐵) ∈ ℂ)
85, 7mulcld 8047 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
9 ax-icn 7974 . . . . . . . 8 i ∈ ℂ
10 sincl 11871 . . . . . . . . 9 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
1110adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐵) ∈ ℂ)
12 mulcl 8006 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
139, 11, 12sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
14 sincl 11871 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1514adantr 276 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
16 mulcl 8006 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
179, 15, 16sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
1813, 17mulcld 8047 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) ∈ ℂ)
198, 18addcld 8046 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ)
205, 13mulcld 8047 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘𝐵))) ∈ ℂ)
217, 17mulcld 8047 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) · (i · (sin‘𝐴))) ∈ ℂ)
2220, 21addcld 8046 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ)
2319, 22, 19ppncand 8377 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) + ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
24 adddi 8011 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
259, 24mp3an1 1335 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
2625fveq2d 5562 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = (exp‘((i · 𝐴) + (i · 𝐵))))
27 simpl 109 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
28 mulcl 8006 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
299, 27, 28sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
30 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
31 mulcl 8006 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
329, 30, 31sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
33 efadd 11840 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
3429, 32, 33syl2anc 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
35 efival 11897 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
36 efival 11897 . . . . . . . 8 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
3735, 36oveqan12d 5941 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))))
385, 17, 7, 13muladdd 8442 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
3937, 38eqtrd 2229 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
4026, 34, 393eqtrd 2233 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
41 negicn 8227 . . . . . . . 8 -i ∈ ℂ
42 adddi 8011 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
4341, 42mp3an1 1335 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
4443fveq2d 5562 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = (exp‘((-i · 𝐴) + (-i · 𝐵))))
45 mulcl 8006 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4641, 27, 45sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
47 mulcl 8006 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
4841, 30, 47sylancr 414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
49 efadd 11840 . . . . . . 7 (((-i · 𝐴) ∈ ℂ ∧ (-i · 𝐵) ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
5046, 48, 49syl2anc 411 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
51 efmival 11898 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
52 efmival 11898 . . . . . . . 8 (𝐵 ∈ ℂ → (exp‘(-i · 𝐵)) = ((cos‘𝐵) − (i · (sin‘𝐵))))
5351, 52oveqan12d 5941 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))))
545, 17, 7, 13mulsubd 8443 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5553, 54eqtrd 2229 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5644, 50, 553eqtrd 2233 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
5740, 56oveq12d 5940 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) = (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) + ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
58192timesd 9234 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
5923, 57, 583eqtr4d 2239 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) = (2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))))
6059oveq1d 5937 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) + (exp‘(-i · (𝐴 + 𝐵)))) / 2) = ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2))
61 2cn 9061 . . . . 5 2 ∈ ℂ
62 2ap0 9083 . . . . 5 2 # 0
63 divcanap3 8725 . . . . 5 (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
6461, 62, 63mp3an23 1340 . . . 4 ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
6519, 64syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))))
669a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6766, 11, 66, 15mul4d 8181 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) = ((i · i) · ((sin‘𝐵) · (sin‘𝐴))))
68 ixi 8610 . . . . . . 7 (i · i) = -1
6968oveq1i 5932 . . . . . 6 ((i · i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐵) · (sin‘𝐴)))
7011, 15mulcomd 8048 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐵) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘𝐵)))
7170oveq2d 5938 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵))))
7269, 71eqtrid 2241 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((sin‘𝐵) · (sin‘𝐴))) = (-1 · ((sin‘𝐴) · (sin‘𝐵))))
7315, 11mulcld 8047 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ)
7473mulm1d 8436 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((sin‘𝐴) · (sin‘𝐵))) = -((sin‘𝐴) · (sin‘𝐵)))
7567, 72, 743eqtrd 2233 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) = -((sin‘𝐴) · (sin‘𝐵)))
7675oveq2d 5938 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) = (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵))))
778, 73negsubd 8343 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + -((sin‘𝐴) · (sin‘𝐵))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
7865, 76, 773eqtrd 2233 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴))))) / 2) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
793, 60, 783eqtrd 2233 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880  ici 7881   + caddc 7882   · cmul 7884  cmin 8197  -cneg 8198   # cap 8608   / cdiv 8699  2c2 9041  expce 11807  sincsin 11809  cosccos 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-sin 11815  df-cos 11816
This theorem is referenced by:  tanaddaplem  11903  tanaddap  11904  cossub  11906  sinmul  11909  cosmul  11910  addcos  11911  subcos  11912  sincossq  11913  cos2t  11915  cos12dec  11933  demoivreALT  11939  cosppi  15054  coshalfpip  15058
  Copyright terms: Public domain W3C validator