![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isermulc2 | GIF version |
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.) |
Ref | Expression |
---|---|
clim2iser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isermulc2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isermulc2.4 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
isermulc2.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
isermulc2.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
isermulc2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
Ref | Expression |
---|---|
isermulc2 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2iser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isermulc2.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isermulc2.5 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
4 | isermulc2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | seqex 10433 | . . 3 ⊢ seq𝑀( + , 𝐺) ∈ V | |
6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ V) |
7 | isermulc2.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
8 | 1, 2, 7 | serf 10460 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
9 | 8 | ffvelcdmda 5647 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
10 | addcl 7927 | . . . 4 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
11 | 10 | adantl 277 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
12 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℂ) |
13 | adddi 7934 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) | |
14 | 13 | 3expb 1204 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) |
15 | 12, 14 | sylan 283 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) |
16 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
17 | 16, 1 | eleqtrdi 2270 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
18 | 1 | eleq2i 2244 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
19 | 18, 7 | sylan2br 288 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
20 | 19 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
21 | isermulc2.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) | |
22 | 18, 21 | sylan2br 288 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
23 | 22 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
24 | mulcl 7929 | . . . 4 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) | |
25 | 24 | adantl 277 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) |
26 | 11, 15, 17, 20, 23, 25, 12 | seq3distr 10499 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) = (𝐶 · (seq𝑀( + , 𝐹)‘𝑗))) |
27 | 1, 2, 3, 4, 6, 9, 26 | climmulc2 11323 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 Vcvv 2737 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 + caddc 7805 · cmul 7807 ℤcz 9242 ℤ≥cuz 9517 seqcseq 10431 ⇝ cli 11270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-rp 9641 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-clim 11271 |
This theorem is referenced by: isummulc2 11418 mertensabs 11529 ege2le3 11663 eftlub 11682 |
Copyright terms: Public domain | W3C validator |