ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isermulc2 GIF version

Theorem isermulc2 11141
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
clim2iser.1 𝑍 = (ℤ𝑀)
isermulc2.2 (𝜑𝑀 ∈ ℤ)
isermulc2.4 (𝜑𝐶 ∈ ℂ)
isermulc2.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
isermulc2.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
isermulc2.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
isermulc2 (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝐶,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍

Proof of Theorem isermulc2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2iser.1 . 2 𝑍 = (ℤ𝑀)
2 isermulc2.2 . 2 (𝜑𝑀 ∈ ℤ)
3 isermulc2.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 isermulc2.4 . 2 (𝜑𝐶 ∈ ℂ)
5 seqex 10251 . . 3 seq𝑀( + , 𝐺) ∈ V
65a1i 9 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
7 isermulc2.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
81, 2, 7serf 10278 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
98ffvelrnda 5563 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
10 addcl 7769 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
1110adantl 275 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
124adantr 274 . . . 4 ((𝜑𝑗𝑍) → 𝐶 ∈ ℂ)
13 adddi 7776 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
14133expb 1183 . . . 4 ((𝐶 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
1512, 14sylan 281 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
16 simpr 109 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1eleqtrdi 2233 . . 3 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
181eleq2i 2207 . . . . 5 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1918, 7sylan2br 286 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
2019adantlr 469 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 isermulc2.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2218, 21sylan2br 286 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2322adantlr 469 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
24 mulcl 7771 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
2524adantl 275 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
2611, 15, 17, 20, 23, 25, 12seq3distr 10317 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) = (𝐶 · (seq𝑀( + , 𝐹)‘𝑗)))
271, 2, 3, 4, 6, 9, 26climmulc2 11132 1 (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  Vcvv 2689   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642   + caddc 7647   · cmul 7649  cz 9078  cuz 9350  seqcseq 10249  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  isummulc2  11227  mertensabs  11338  ege2le3  11414  eftlub  11433
  Copyright terms: Public domain W3C validator