![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isermulc2 | GIF version |
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.) |
Ref | Expression |
---|---|
clim2iser.1 | β’ π = (β€β₯βπ) |
isermulc2.2 | β’ (π β π β β€) |
isermulc2.4 | β’ (π β πΆ β β) |
isermulc2.5 | β’ (π β seqπ( + , πΉ) β π΄) |
isermulc2.6 | β’ ((π β§ π β π) β (πΉβπ) β β) |
isermulc2.7 | β’ ((π β§ π β π) β (πΊβπ) = (πΆ Β· (πΉβπ))) |
Ref | Expression |
---|---|
isermulc2 | β’ (π β seqπ( + , πΊ) β (πΆ Β· π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2iser.1 | . 2 β’ π = (β€β₯βπ) | |
2 | isermulc2.2 | . 2 β’ (π β π β β€) | |
3 | isermulc2.5 | . 2 β’ (π β seqπ( + , πΉ) β π΄) | |
4 | isermulc2.4 | . 2 β’ (π β πΆ β β) | |
5 | seqex 10446 | . . 3 β’ seqπ( + , πΊ) β V | |
6 | 5 | a1i 9 | . 2 β’ (π β seqπ( + , πΊ) β V) |
7 | isermulc2.6 | . . . 4 β’ ((π β§ π β π) β (πΉβπ) β β) | |
8 | 1, 2, 7 | serf 10473 | . . 3 β’ (π β seqπ( + , πΉ):πβΆβ) |
9 | 8 | ffvelcdmda 5651 | . 2 β’ ((π β§ π β π) β (seqπ( + , πΉ)βπ) β β) |
10 | addcl 7935 | . . . 4 β’ ((π β β β§ π₯ β β) β (π + π₯) β β) | |
11 | 10 | adantl 277 | . . 3 β’ (((π β§ π β π) β§ (π β β β§ π₯ β β)) β (π + π₯) β β) |
12 | 4 | adantr 276 | . . . 4 β’ ((π β§ π β π) β πΆ β β) |
13 | adddi 7942 | . . . . 5 β’ ((πΆ β β β§ π β β β§ π₯ β β) β (πΆ Β· (π + π₯)) = ((πΆ Β· π) + (πΆ Β· π₯))) | |
14 | 13 | 3expb 1204 | . . . 4 β’ ((πΆ β β β§ (π β β β§ π₯ β β)) β (πΆ Β· (π + π₯)) = ((πΆ Β· π) + (πΆ Β· π₯))) |
15 | 12, 14 | sylan 283 | . . 3 β’ (((π β§ π β π) β§ (π β β β§ π₯ β β)) β (πΆ Β· (π + π₯)) = ((πΆ Β· π) + (πΆ Β· π₯))) |
16 | simpr 110 | . . . 4 β’ ((π β§ π β π) β π β π) | |
17 | 16, 1 | eleqtrdi 2270 | . . 3 β’ ((π β§ π β π) β π β (β€β₯βπ)) |
18 | 1 | eleq2i 2244 | . . . . 5 β’ (π β π β π β (β€β₯βπ)) |
19 | 18, 7 | sylan2br 288 | . . . 4 β’ ((π β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
20 | 19 | adantlr 477 | . . 3 β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
21 | isermulc2.7 | . . . . 5 β’ ((π β§ π β π) β (πΊβπ) = (πΆ Β· (πΉβπ))) | |
22 | 18, 21 | sylan2br 288 | . . . 4 β’ ((π β§ π β (β€β₯βπ)) β (πΊβπ) = (πΆ Β· (πΉβπ))) |
23 | 22 | adantlr 477 | . . 3 β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΊβπ) = (πΆ Β· (πΉβπ))) |
24 | mulcl 7937 | . . . 4 β’ ((π β β β§ π₯ β β) β (π Β· π₯) β β) | |
25 | 24 | adantl 277 | . . 3 β’ (((π β§ π β π) β§ (π β β β§ π₯ β β)) β (π Β· π₯) β β) |
26 | 11, 15, 17, 20, 23, 25, 12 | seq3distr 10512 | . 2 β’ ((π β§ π β π) β (seqπ( + , πΊ)βπ) = (πΆ Β· (seqπ( + , πΉ)βπ))) |
27 | 1, 2, 3, 4, 6, 9, 26 | climmulc2 11338 | 1 β’ (π β seqπ( + , πΊ) β (πΆ Β· π΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 Vcvv 2737 class class class wbr 4003 βcfv 5216 (class class class)co 5874 βcc 7808 + caddc 7813 Β· cmul 7815 β€cz 9252 β€β₯cuz 9527 seqcseq 10444 β cli 11285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-2 8977 df-3 8978 df-4 8979 df-n0 9176 df-z 9253 df-uz 9528 df-rp 9653 df-seqfrec 10445 df-exp 10519 df-cj 10850 df-re 10851 df-im 10852 df-rsqrt 11006 df-abs 11007 df-clim 11286 |
This theorem is referenced by: isummulc2 11433 mertensabs 11544 ege2le3 11678 eftlub 11697 |
Copyright terms: Public domain | W3C validator |