| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isermulc2 | GIF version | ||
| Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.) |
| Ref | Expression |
|---|---|
| clim2iser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isermulc2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isermulc2.4 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| isermulc2.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| isermulc2.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| isermulc2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| isermulc2 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2iser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | isermulc2.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | isermulc2.5 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 4 | isermulc2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | seqex 10558 | . . 3 ⊢ seq𝑀( + , 𝐺) ∈ V | |
| 6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ V) |
| 7 | isermulc2.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 8 | 1, 2, 7 | serf 10592 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 9 | 8 | ffvelcdmda 5700 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
| 10 | addcl 8021 | . . . 4 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
| 11 | 10 | adantl 277 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
| 12 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℂ) |
| 13 | adddi 8028 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) | |
| 14 | 13 | 3expb 1206 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) |
| 15 | 12, 14 | sylan 283 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) |
| 16 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 17 | 16, 1 | eleqtrdi 2289 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 18 | 1 | eleq2i 2263 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 19 | 18, 7 | sylan2br 288 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 20 | 19 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 21 | isermulc2.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) | |
| 22 | 18, 21 | sylan2br 288 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
| 23 | 22 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
| 24 | mulcl 8023 | . . . 4 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) | |
| 25 | 24 | adantl 277 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) |
| 26 | 11, 15, 17, 20, 23, 25, 12 | seq3distr 10641 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) = (𝐶 · (seq𝑀( + , 𝐹)‘𝑗))) |
| 27 | 1, 2, 3, 4, 6, 9, 26 | climmulc2 11513 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 + caddc 7899 · cmul 7901 ℤcz 9343 ℤ≥cuz 9618 seqcseq 10556 ⇝ cli 11460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 |
| This theorem is referenced by: isummulc2 11608 mertensabs 11719 ege2le3 11853 eftlub 11872 |
| Copyright terms: Public domain | W3C validator |