ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 GIF version

Theorem muladd11 7594
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 7417 . . . 4 1 ∈ ℂ
2 addcl 7446 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
31, 2mpan 415 . . 3 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
4 adddi 7453 . . . 4 (((1 + 𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)))
51, 4mp3an2 1261 . . 3 (((1 + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)))
63, 5sylan 277 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)))
73mulid1d 7484 . . . 4 (𝐴 ∈ ℂ → ((1 + 𝐴) · 1) = (1 + 𝐴))
87adantr 270 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 1) = (1 + 𝐴))
9 adddir 7458 . . . . 5 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵)))
101, 9mp3an1 1260 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵)))
11 mulid2 7465 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
1211adantl 271 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · 𝐵) = 𝐵)
1312oveq1d 5649 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) + (𝐴 · 𝐵)) = (𝐵 + (𝐴 · 𝐵)))
1410, 13eqtrd 2120 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = (𝐵 + (𝐴 · 𝐵)))
158, 14oveq12d 5652 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
166, 15eqtrd 2120 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  (class class class)co 5634  cc 7327  1c1 7330   + caddc 7332   · cmul 7334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7416  ax-1cn 7417  ax-icn 7419  ax-addcl 7420  ax-mulcl 7422  ax-mulcom 7425  ax-mulass 7427  ax-distr 7428  ax-1rid 7431  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637
This theorem is referenced by:  muladd11r  7617  bernneq  10039
  Copyright terms: Public domain W3C validator