ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 GIF version

Theorem muladd11 8092
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = ((1 + ๐ด) + (๐ต + (๐ด ยท ๐ต))))

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 7906 . . . 4 1 โˆˆ โ„‚
2 addcl 7938 . . . 4 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (1 + ๐ด) โˆˆ โ„‚)
31, 2mpan 424 . . 3 (๐ด โˆˆ โ„‚ โ†’ (1 + ๐ด) โˆˆ โ„‚)
4 adddi 7945 . . . 4 (((1 + ๐ด) โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)))
51, 4mp3an2 1325 . . 3 (((1 + ๐ด) โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)))
63, 5sylan 283 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)))
73mulridd 7976 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ((1 + ๐ด) ยท 1) = (1 + ๐ด))
87adantr 276 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท 1) = (1 + ๐ด))
9 adddir 7950 . . . . 5 ((1 โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท ๐ต) = ((1 ยท ๐ต) + (๐ด ยท ๐ต)))
101, 9mp3an1 1324 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท ๐ต) = ((1 ยท ๐ต) + (๐ด ยท ๐ต)))
11 mullid 7957 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ (1 ยท ๐ต) = ๐ต)
1211adantl 277 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (1 ยท ๐ต) = ๐ต)
1312oveq1d 5892 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 ยท ๐ต) + (๐ด ยท ๐ต)) = (๐ต + (๐ด ยท ๐ต)))
1410, 13eqtrd 2210 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท ๐ต) = (๐ต + (๐ด ยท ๐ต)))
158, 14oveq12d 5895 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((1 + ๐ด) ยท 1) + ((1 + ๐ด) ยท ๐ต)) = ((1 + ๐ด) + (๐ต + (๐ด ยท ๐ต))))
166, 15eqtrd 2210 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((1 + ๐ด) ยท (1 + ๐ต)) = ((1 + ๐ด) + (๐ต + (๐ด ยท ๐ต))))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   = wceq 1353   โˆˆ wcel 2148  (class class class)co 5877  โ„‚cc 7811  1c1 7814   + caddc 7816   ยท cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-mulcl 7911  ax-mulcom 7914  ax-mulass 7916  ax-distr 7917  ax-1rid 7920  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  muladd11r  8115  bernneq  10643
  Copyright terms: Public domain W3C validator