ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 GIF version

Theorem muladd11 8275
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 8088 . . . 4 1 ∈ ℂ
2 addcl 8120 . . . 4 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ)
31, 2mpan 424 . . 3 (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ)
4 adddi 8127 . . . 4 (((1 + 𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)))
51, 4mp3an2 1359 . . 3 (((1 + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)))
63, 5sylan 283 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)))
73mulridd 8159 . . . 4 (𝐴 ∈ ℂ → ((1 + 𝐴) · 1) = (1 + 𝐴))
87adantr 276 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 1) = (1 + 𝐴))
9 adddir 8133 . . . . 5 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵)))
101, 9mp3an1 1358 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵)))
11 mullid 8140 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
1211adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · 𝐵) = 𝐵)
1312oveq1d 6015 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) + (𝐴 · 𝐵)) = (𝐵 + (𝐴 · 𝐵)))
1410, 13eqtrd 2262 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = (𝐵 + (𝐴 · 𝐵)))
158, 14oveq12d 6018 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
166, 15eqtrd 2262 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993  1c1 7996   + caddc 7998   · cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-mulcl 8093  ax-mulcom 8096  ax-mulass 8098  ax-distr 8099  ax-1rid 8102  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  muladd11r  8298  bernneq  10877
  Copyright terms: Public domain W3C validator