| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > muladd11 | GIF version | ||
| Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| muladd11 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | addcl 8021 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 + 𝐴) ∈ ℂ) |
| 4 | adddi 8028 | . . . 4 ⊢ (((1 + 𝐴) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) | |
| 5 | 1, 4 | mp3an2 1336 | . . 3 ⊢ (((1 + 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) |
| 6 | 3, 5 | sylan 283 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵))) |
| 7 | 3 | mulridd 8060 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 + 𝐴) · 1) = (1 + 𝐴)) |
| 8 | 7 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 1) = (1 + 𝐴)) |
| 9 | adddir 8034 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵))) | |
| 10 | 1, 9 | mp3an1 1335 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = ((1 · 𝐵) + (𝐴 · 𝐵))) |
| 11 | mullid 8041 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
| 12 | 11 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · 𝐵) = 𝐵) |
| 13 | 12 | oveq1d 5940 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) + (𝐴 · 𝐵)) = (𝐵 + (𝐴 · 𝐵))) |
| 14 | 10, 13 | eqtrd 2229 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · 𝐵) = (𝐵 + (𝐴 · 𝐵))) |
| 15 | 8, 14 | oveq12d 5943 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((1 + 𝐴) · 1) + ((1 + 𝐴) · 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
| 16 | 6, 15 | eqtrd 2229 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 1c1 7897 + caddc 7899 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: muladd11r 8199 bernneq 10769 |
| Copyright terms: Public domain | W3C validator |